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Abstract and Overview
The following paper will illustrate the µComp programming language, created for the ”Lan-
guages, Compilers and Interpreters” laboratory course. The document explains how the
language is implemented.

The first section will introduce the language with its features and will show a little example
of a program. The second section will show the language grammar, and it will discuss
the design choices of the scanning and parsing phases. The third will describe how the
semantic analysis checks are performed, according to the assignment specifications. The
fourth and fifth sections will focus onto the code linking and code generation phase using
the LLVM compiler infrastructure. Finally, the conclusion section will end the document
with an overview of future developments and improvements.

1 Introduction to µComp
As the assignment cites: ’µComp is a simple component-based imperative language‘. The
main features of the language are the following:

• is statically type checked;

• programs are made of components, which are linked together to form a whole program;

• a component is stateful, there is only one instance of each component;

• component behaviour specifications are given in terms of interfaces, which can be
provided or used by the components;

• interfaces specify a set of functions and global variables to be provided by the inter-
face’s provider (similar to the Java programming language);

• components are statically linked to each other via their interfaces.

Listing 1 shows a little program, that prints a greeting, using the µComp programming
language. The interface StringPrinter defines the function print_str which takes an
array of characters and a size integer. The component SimplePrinter provides the inter-
face StringPrinter that defines print_str function. The Main component is the entry
program point, since it provides the App interface. The main can invoke the print_str
function because the component is using the StringPrinter interface. At the end, the
Main.StringPrinter is linked with SimplePrinter.StringPrinter, so the call to print_str
inside the Main component will be qualified with the SimplePrinter component. More ex-
amples can be found inside the test/samples directory of the project.
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interface StringPrinter {
def print_str(msg: char[], size: int): void;

}

component SimplePrinter provides StringPrinter {
def print_str(msg: char[], size: int): void {

var i: int;
for (i = 0; i < size; i++) putc(msg[i]);
return;

}
}

component Main provides App uses StringPrinter {

def main(): int {

var msg: char[6];
msg[0] = 'H';
msg[1] = 'e';
msg[2] = 'l';
msg[3] = 'l';
msg[4] = 'o';
msg[5] = '!';

print_str(msg, 6);

return 0;
}

}

connect Main.StringPrinter <- SimplePrinter.StringPrinter;

Listing 1: ’A µComp program that greets an user.’

1.1 Language Extensions
The assignment project requests the implementation of at least two language extensions. I
chose the following constructs:

• abbreviation for assignment operators (+ =, − =, ∗ =, / =, % =);

• pre/post increment/decrement operators (++ and −−);

• variable declaration with initialization;

• floating point arithmetic.

Next sections will explain how these extensions have been implemented inside the compiler.
For each new extension, a unit test file has been added to check the correct functioning.

2 Lexing and Parsing phases
This section defines µComp grammar and how the lexing and parsing phase are designed.

2.1 Grammar
Here is the µComp grammar expressed in EBNF notation. The words enclosed by the angle
brackets are non-terminal symbol; uppercase words are tokens containing a value. The
grammar contains the extensions chosen for the fourth assignment.

⟨CompilationUnit⟩ ::= ⟨TopDecl⟩* EOF
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⟨TopDecl⟩ ::= ‘interface’ ID ‘{’ ⟨IMemberDecl⟩+ ‘}’
| ‘component’ ID ⟨ProvideClause⟩? ⟨UseClause⟩? ‘{’ ⟨CMemberDecl⟩+ ’}‘ | `connect’
⟨Link⟩ ‘;’? | ‘connect’ ‘{’ (⟨Link⟩ ‘;’)* ‘}’

⟨Link⟩ ::= ID ‘.’ ID ‘<-’ ID ‘.’ ID

⟨IMemberDecl⟩ ::= ‘var’ ⟨VarSign⟩ ‘;’ | ⟨FunProto⟩ ‘;’

⟨ProvideClause⟩ ::= ‘provides’ (ID ‘,’)* ID

⟨UseClause⟩ ::= ‘uses’ (ID ,)* ID

⟨VarSign⟩ ::= ID ‘:’ ⟨Type⟩

⟨FunProto⟩ ::= ‘def’ ID ‘(’((⟨VarSign⟩ ‘,’)* ⟨VarSign⟩)? ‘)’ (‘:’ ⟨BasicType⟩)?

⟨CMemberDecl⟩ ::= ‘var’ ⟨VarSign⟩ ‘;’ | ‘var’ ⟨VarSign⟩ ‘=’ ⟨Expr⟩ ‘;’ | ⟨FunDecl⟩

⟨Fundecl⟩ ::= ⟨FunProto⟩ ⟨Block⟩

⟨Block⟩ ::= ‘{’ (⟨Stmt⟩ | ‘var’ ⟨VarSign⟩ ‘;’ | ‘var’ ⟨VarSign⟩ ‘=’ ⟨Expr⟩ ‘;’)* ‘}’

⟨Type⟩ ::= ⟨BasicType⟩ | ⟨Type⟩ ‘[’ ‘]’ | ⟨Type⟩ ‘[’ INT ‘]’ | ‘&’ ⟨BasicType⟩

⟨BasicType⟩ ::= ‘int’ | ‘char’ | ‘void’ | ‘bool’ | ‘float’

⟨Stmt⟩ ::= ‘return’ ⟨Expr⟩? ‘;’
| ⟨Expr⟩? ‘;’
| ⟨Block⟩
| ‘while’ ‘(’ ⟨Expr⟩ ‘)’ ⟨Stmt⟩
| ‘if’ ‘(’ ⟨Expr ‘)’ <Stmt⟩ ‘else’ ⟨Stmt⟩
| ‘if’ ‘(’ ⟨Expr⟩ ‘)’ ⟨Stmt⟩
| ‘for’ ‘(’ ⟨Expr⟩? ‘;’ ⟨Expr⟩? ‘;’ ⟨Expr⟩? ‘)’ ⟨Stmt⟩

⟨Expr⟩ ::= INT | CHAR | BOOL | FLOAT
| ‘(’ ⟨Expr⟩ ‘)’
| ‘&’ ⟨LValue⟩
| ⟨LValue⟩ ‘=’ ⟨Expr⟩
| ‘!’ ⟨Expr⟩
| ID ‘(’ ((⟨Expr⟩ ‘,’)* ⟨Expr⟩)? ‘)’
| ⟨LValue⟩
| ‘-’ ⟨Expr⟩
| ⟨Expr⟩ ⟨BinOp⟩ ⟨Expr⟩
| ⟨LValue⟩ ‘++’ | ‘++’ ⟨LValue⟩ | ⟨LValue⟩ ‘--’ | ‘--’ ⟨LValue⟩
| ⟨LValue⟩ ‘+=’ ⟨Expr⟩ | ⟨LValue⟩ ‘-=’ ⟨Expr⟩ | ⟨LValue⟩ ‘*=’ ⟨Expr⟩ | ⟨LValue⟩ ‘/=’ ⟨Expr⟩

| ⟨LValue⟩ ‘%=’ ⟨Expr⟩

⟨LValue⟩ ::= ID | ID ‘[’ Expr ‘]’

⟨BinOp⟩ ::= ‘+’ | ‘-’ | ‘*’ | ‘%’ | ‘/’ | ‘&&’ | ‘||’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘==’ | ‘!=’

The token ID represents strings used for the identifiers. Tokens INT, FLOAT, CHAR and
BOOL represent integers, floating point number, characters and boolean literals.

2.2 OCamllex
Ocamllex1 is a tool that produces a lexical analyser given a file containing regular expres-
sions. This subsection describes how regular expressions are made and how some additional
checks, like 32-bit numbers one check, are implemented. The lexer specification can be
found inside scanner.mll file.

1For further details: https://ocaml.org/manual/lexyacc.html
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The header section contains utility functions to perform the requested checks by the assign-
ment. Additionally, to the check functions, a dictionary of reserved words (keywords) can
be found. Each table key is associated with a token, in which there are nineteen keywords:
true, false, var, def, uses, int, float, char, bool, void, for, while, if, else, return, connect,
provides, uses, interface and component.

There are four check functions:

1. check_identifier: if the given string does not exceed the length of sixty-four char-
acters generates an identifier token;

2. check_num_float_32: checks if a given floating number is a 32-bit one, and it returns
a token representing the number;

3. check_num_int_32: is similar to the function above, except that is for integer num-
bers. The function checks if the given number exceed the maximum integer, which is
0x7FFFFFFF;

4. check_character: ensures during the character parsing that there is one and only one
character.

All the check functions can raise a Lexing_error if the preconditions are not satisfied. Each
function accept lexbuf buffer as parameter to address the wrong token position to the user.

The rule section contains all the regular expression definitions for identifiers, numbers (both
integers and floats), hex integer numbers, and blank characters. The rule next_token is the
scanner main entry, it recognizes all the regular expressions listed before, plus additional
operators. The rule also checks for punctuation symbols (parenthesis, commas, brackets,
and so on …).

Furthermore, this section, contains two rules for inline and multiline comments, respectively
denominated: single_line_comment and multi_line_comment.

The single characters have a special rule for their handling. The character rule takes a
character as input, and it checks if it is an escape character. If the character is an escape
one, then its hexadecimal representation is tokenized (note: the standard ASCII representa-
tion cannot be used for some escape characters since they are not recognized by the OCaml
compiler).

The floating point numbers are seen as a list of digits followed by a dot and another list of
digits. Listing 2 shows the rule for this numbers’ category.

let float_number = digit+'.'digit+ (* 3.14, 2.17, 1.1618, ... *)

Listing 2: ”Regular expression for floating point numbers.”

2.3 Menhir
The parsing phase uses Menhir parser generator2. The parser specification is inside
parser.mly file.

The header section defines only two helper functions: the infix operator (@>) that creates an
('a, 'b) annotated_node and build_compilation_unit that returns a new compilation
unit given interfaces, components and connections.

The rule section contains all the productions defined by the language grammar, with the
following precedences and associations listed in Listing 3.

%nonassoc K_IF
%nonassoc K_ELSE

2Menhir is an LR(1) parser generator for OCaml. http://gallium.inria.fr/ fpottier/menhir/
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%right O_ASSIGN O_PLUS_ASSIGN O_MINUS_ASSIGN O_TIMES_ASSIGN O_DIV_ASSIGN
O_MOD_ASSIGN

%left L_OR_OR
%left L_AND_AND
%left C_EQ_EQ C_NOT_EQ

%nonassoc C_LT C_GT C_GT_EQ C_LT_EQ

%left M_PLUS M_MINUS
%left M_TIMES M_DIV M_MOD

%right M_MINUS_MINUS

%nonassoc U_MINUS
%nonassoc U_NOT

Listing 3: ”Precedences and associactions.”

The starting symbol is the compilation_unit defined in Listings 2.3. The decls variable is
a list of Ast.definition which is a new variant type defined to handle the creation of a com-
pilation unit in a single rule. Each top_decl can be an interface, component or connection
block definition. The introduction of the new type allows writing the compilation_unit in
a short and simple form.

compilation_unit:
| decls = top_decl* EOF { build_compilation_unit decls }

top_decl:
| interface { Ast.InterfaceDef($1) }
| component { Ast.ComponentDef($1) }
| connections { Ast.ConnectionDef($1) }

The precedence rules showed in Listing 3 guarantee that there is no dangling else problem
3.

2.4 Edits on the Abstract Syntax Tree
Not all the new extensions have a strong impact on the existing Abstract Syntax Tree
already given. For example, the first language extension listed before in Section 1.1, the
abbreviation for assignment operators, does not introduce any change, because during the
parsing phase when the token is matched it will be treated just like an assignment. The
Listing 4 shows an example rule for this case.

...
| lv = l_value O_PLUS_ASSIGN e = expr {

let lv_exp = Ast.LV(lv) @> $loc in
let final_exp = (Ast.BinaryOp(Ast.Add, lv_exp, e)) @> $loc in
(Ast.Assign(lv, final_exp)) @> $loc

}
...

Listing 4: ”How the short operator assignment rule is implemented for plus-equal. The rule
does not use any new AST construct but it reuses the pre-exisisting AST’s Assign with some
pre-coding.”

To implement pre/post increment/decrement operators, the ast.ml defines new variant
types, respectively:

• type dop = MinMin | PlusPlus and dop_prec = Pre | Post, where the dop_prec
indicates if the operator stands before the increment/decrement operator;

3Dangling else: https://en.wikipedia.org/wiki/Dangling_else
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• type 'a expr = ... | DoubleOp of dop * dop_prec * 'a lvalue, this new expres-
sion has different semantic according to the dop_prec field, which is similar to the
C-like programming languages. The ++ and −− can only be applied to numerical
type variables, such as integer and floating point numbers.

The parser file contains two new tokens for these two operators: M_PLUS_PLUS and M_MINUS_MINUS.
The latter operator raised a problem inside the parser. The expression --42 would be not
recognized as valid by the parser, since the lexer would tokenize the token M_MINUS_MINUS
and not two M_MINUS, this led to the rule listed in Listings 5 to not be matched. To solve
this issue, the rule has been changed like the one shown in Listings 6.
| M_MINUS_MINUS l_value {

(Ast.DoubleOp(Ast.MinusMinus, Ast.Pre, $2)) @> $loc
}

Listing 5: ”Previous rule raising problems during the parse phase.”

| M_MINUS_MINUS e = expr {
match (e.Ast.node) with
| Ast.LV(lv) ->

(Ast.DoubleOp(Ast.MinMin, Ast.Pre, lv)) @> $loc
| _ ->

let u_exp = Ast.UnaryOp(Ast.Neg, e) @> $loc in
(Ast.UnaryOp(Ast.Neg, u_exp)) @> $loc

}
Listing 6: ”New rule wich solves the problem described with preceeding −− operator.”

The implementation of ”variable declaration with initialization” required the change of
Ast.VarDecl and Ast.LocalDecl, which now accepts an optional expression used as initial
value for the variable. The parser rules for this implementation are pretty straightforward
as shown in Listings 7. Array initialization is not supported to respect the assignment spec-
ification which does not allow array assignments. Furthermore, interface variables cannot
be initialized, this is a design choice since an interface guarantees that a component will
provide determined members.
c_member_decl:
| K_VAR vs = var_sign SEMICOLON { (Ast.VarDecl(vs, None)) @> $loc }
| K_VAR vs = var_sign O_ASSIGN e = expr SEMICOLON { (Ast.VarDecl(vs, Some e))

@> $loc }
...

block_element:
| K_VAR vs = var_sign SEMICOLON { (Ast.LocalDecl(vs, None)) @> $loc }
| K_VAR vs = var_sign O_ASSIGN e = expr SEMICOLON { (Ast.LocalDecl(vs, Some e

)) @> $loc }
...

Listing 7: ”Rules for variable initialization.”

For the last language extension, the floating point arithmetic, the ast.ml file contains new
definitions for a float type and float literals. All the previous maths operators can be used
with floating point numbers.

3 Semantic Analysis phase
The section describes how the Symbol Table is implemented and how the Semantic Analysis
phase is performed by the compiler.

3.1 Symbol Table
This subsection describes how the symbol table interface is implemented inside the project.
The implementation can be found inside symbol_table.ml file.
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µComp implements lexical (or stating) scoping as visibility rule for names. The language
has a specific rule set:

• interface and components define their own scope containing variables and functions;

• the global scope contains only interface, component and connection declarations which
are mutually recursive;

• a function defines its own scope;

• the declarations inside the component are mutually recursive as well;

• a function could contain nested blocks, in which each of them defines their own scope
that can hide previous variable definitions (as shown in Figure 1);

• control flow statements with a block as body define a new block scope.

The Symbol_table module defines a new type 'a t for the symbol table. Listing 8 shows
how the type is implemented. The implementation emulates a stack of blocks, in which the
top block could shadow the previous defined names.

type 'a t =
| EmptySymbolTable
| SymbolTable of {

parent: 'a t;
table: (Ast.identifier, 'a) Hashtbl.t

}

Listing 8: ”Symbol Table type definition.”

The empty_table function points to an EmptySymbolTable which is a dummy placeholder
without any blocks contained in it. To add a new block, the user can use begin_block,
which pushes a new SymbolTable value with the parent pointing to the previous block, and
it creates a new hash table with Ast.identifier as key and a generic 'a as value. To pop
a block, the function end_block is invoked, which returns the parent of the current block
that the symbol table is pointing to. If end_block takes as parameter a EmptySymbolTable
an OCaml exception is thrown signalling that the operation cannot be performed.

The add_entry function adds, as the name suggests, a new entry inside the symbol table if
and only if the current block does not contain a value with the same key. If there already
exists a value with a given identifier, the exception DuplicateEntry is thrown to the caller.
The lookup function checks recursively if an identifier is contained inside the symbol table.
If the current block does not contain the searched key, then the function will call itself to the
parent block. The recursion terminates if the identifier is found or the EmptySymbolTable
has been reached, raising a MissingEntry exception as consequence.

3.2 Semantic checks
The semantic analysis is performed using the symbol table previously described. At the
beginning of the file semantic_analysis.ml there are two new types definitions for the
use of the symbol table: attr and 'a sym. The Listing 9 shows how these two types are
defined.
The former type is used as metadata container for the symbols, since there are common
fields (like the identifier, location and the type). The second type is a variant one, inspired
by the Symbol Table chapter inside ‘Engineering a Compiler’ book [TC07], structured in
the following way:

• SComponent is the symbol representing a Component, this construct has its attributes,
a component symbol table which represents the component’s scope containing field and
function symbols, and two symbol tables for the used and provided interface symbols;

• SInterface represents an interface symbol, and it only has its attributes and an
interface symbol table which contains fields and function symbols;
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def foo(a: int, b: int) {

var i: int = 0;
{

var a: char = 'a';
{

var b: bool = true;
}
putc(a);

}
{

var b: float = 3.14;
print_f(b);

}

print(a + b);
}

<Empty>

["a", $loc, int]; ["b", $loc, int]

["i", $loc, int]

["a", $loc, char] ["b", $loc, float]

["b", $loc, bool]

Figure 1: The figure shows how a function scope is represented using the symbol table. Each
node represents a level of scoping. A triplet contains the symbol identifier, the location in
the code and the type.

• SFunction represents a function symbol, and it has a function symbol table for its
parameter and local variables symbols;

• SVar is the last symbol representing a variable, and it has only the attributes described
before.

type attr = {id: Ast.identifier; loc: Location.code_pos; typ: Ast.typ}
type 'a sym =

| SComponent of {cattr: 'a; csym_tbl: 'a sym_table; cprov: 'a sym_table;
cuses: 'a sym_table}

| SInterface of {iattr: 'a; isym_tbl: 'a sym_table}
| SFunction of {fattr: 'a; fsym_tbl: 'a sym_table}
| SVar of {vattr: 'a}

and 'a sym_table = ('a sym) Symbol_table.t

Listing 9: ”The symbol type used by the symbol table during the semantic analysis phase.”

The semantic checks happen in two passes, which will be described in the following subsec-
tions.

3.2.1 First Pass

The first pass creates a global symbol table which will be used by the second pass during the
type checking evaluations. The global symbol table will contain only interface and compo-
nent symbols. Before the generation of the table, several checks are performed as requested
by the assignment specification.

First, the App and Prelude symbol interfaces and dummy interface declaration node will be
created, which will contains all the functions defined in the respective interface signature
(see mcomp_stdlib.ml). After the loading of standard interfaces, user defined ones will be
placed in the global symbol table. Then, the component symbols will be added to the global
table ensuring that:

1. the component does not provide the Prelude interface, since it is implicitly provided
by the runtime support;
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2. the uses and provides component lists are disjointed;

3. a component or an interface with the same name must not exist already;

4. uses and provides symbol table will be created containing only existing interface sym-
bols. This means that if a non-existing interface is referenced or there is a duplicated
interface name in both uses and provides list, a semantic exception will be thrown;

5. the component’s symbol table will contain symbols for its fields and functions;

6. the component members are not defined twice, and they are type checked according
to the specification.

After the interfaces and component symbols are created and inserted into the global symbol
table, these checks are strictly verified:

1. each component defines the members declared in the provided interfaces;

2. there are no interfaces used by a component which led to ambiguous names;

3. no component uses the App interface;

4. there exists just only one component that provides the App interface.

Finally, the global symbol table is generated and verified, thus the second pass can begin.

3.2.2 Second Pass

After the first pass checks, the second pass performs the type checking on the Abstract Syntax
Tree (from this point abbreviated as AST) made by the parser, producing a new typed AST.

The second pass uses the global symbol table to perform type checking. Each AST’s node
is re-created but with a type annotation, instead of a location structure.

For each component member, several checks are performed. The fields with inline initial-
ization are type-checked as well. For the functions, a fun_env value is created, which holds
variables needed by the check (the component symbol, the function symbol table and the
function node).

The following list notes important aspects that are checked on the statements:

• the if, while and for guard expression will evaluate to a boolean type;

• an empty for guard expression will be interpreted as a constant true boolean;

• the expressions returned by a return statement matches the function return type;

• the Ast.Block statement creates a new block inside the current function symbol table;

• any variable declaration will be inserted inside the current function symbol table, and
if the current top block contains already a variable with a specific name, a semantic
exception will be thrown;

The Ast.Expr statements are analysed by the type_check_expr function. Each expression
is examined very carefully and, as for the statements, I will note important aspects of this
evaluation:

• assignment expressions ensure that the assignment of an expression to a variable is
safe (see Section 3.2.3);

• unary operators are applied to correct expressions (Ast.Not operator for boolean ex-
pression and Ast.Neg for numerical expressions);

• double operator (++, −−) applies to numerical variables;

• binary operators are well-formed according to the specification (Section 3.2.3 will dig
into this aspect);
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• the Ast.Address will be typed as a type reference to the given lvalue.

The ”call to a function” expression guarantees that the program is not invoking a variable,
but a function. From the component symbol table, the function symbol is retrieved in or-
der to perform checks for the function arguments (type of the actual types that match the
formal types and length of the actual parameter list). Whether the function symbol is not
found inside the component symbol table, the function name lookup will shift to component
uses symbol table, and for each used interface by the component, the name will be searched.
If the lookup succeeds, then the call expression will be qualified with the interface name
that declares the function (this will be again qualified to a component name providing the
function during the ”Linking phase” described in Section 4), otherwise a semantic exception
is thrown informing that the program is trying to invoke an undefined function.

Once the second pass ends, a typed AST will be passed to the ”Linking phase” to qualify
unqualified interface names to the respective components.

3.2.3 Type checking

As said in the introduction, µComp is a statically type checked language. The language
type system is sound in respect to the types and operation it defines.

The language defines the following types: int, char, float, bool, reference and array types
for those. The type system ensures that an array or a reference to a type cannot be returned
by a function. Multidimensional arrays are not allowed by the language.

The function type_check_assign checks if, given an assignment, the types involving the
lvalue and the expression are valid. This check uses OCaml pattern matching combined
with when statements, and it guarantees that the specification is not violated (see Listing
10).

let type_check_assign typ1 typ2 =
match (typ1, typ2) with
(* Case: T1 <- T2 <== T1=T2 && Scalar(T1) && Scalar(T2) *)
| (t1, t2) when (Ast.equal_typ t1 t2) && (Ast.is_scalar_type t1) && (Ast.
is_scalar_type t2) -> Result.ok true

(* Case: T1 <- &T2 <== Scalar(T1) && T1=T2 && !Ref(T2) *)
| (t1, Ast.TRef(t2)) when (Ast.equal_typ t1 t2) && (Ast.is_scalar_type t1)
&& not(Ast.is_ref t2) -> Result.ok true

(* Case: &T1 <- &T2 <== T1=T2 && Scalar(T1) *)
| (Ast.TRef(t1), Ast.TRef(t2)) when (Ast.equal_typ t1 t2) && (Ast.
is_scalar_type t1) -> Result.ok true

(* Case: &T1 <- T2 <== T1=T2 && Scalar(T1) *)
| (Ast.TRef(t1), t2) when (Ast.equal_typ t1 t2) && (Ast.is_scalar_type t1)
-> Result.ok true

(* Error Cases *)
| (Ast.TArray(_), Ast.TArray(_)) -> Result.error "Arrays cannot be assigned
!"

| (_, Ast.TVoid) -> Result.error "Cannot assign the void type to a variable
!"

| (t1, t2) -> Result.error (Printf.sprintf "Assignment not allowed. You
cannot assign a %s to a %s variable!" (Ast.show_type t2) (Ast.show_type t1
))

Listing 10: ”Type check on assignment expressions”

Binary expressions are type checked as well, so the cases showed in the Table 1 are all valid.
Mathematical operations (i.e. sum, comparisons) between integer and floating point num-
bers are not allowed, but the run-time support (described in Section 5.2) allows converting
a float to integer or vice versa.
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First Operand Type Second Operand Type
T1 T1
T1 &T1
&T1 T1
&T1 &T1

Table 1: Table showing allowed type for binary expressions.

4 Linking phase
The linking phase has two main goals, tested in the following order: (1) verifies that all
the connection statements inside the program are valid and (2) it qualifies all the external
names with the component specified in the connections. This phase is implemented inside
the file linker.ml.

The function check_connections, as the name suggests, ensure that given a connection
C1.I1 <- C2.I2:

• C1 and C2 refer to different components;

• I1 is an interface used by the component C1;

• I2 is an interface provided by the component C2;

• I1 and I2 refer to the same interface name;

• there are no overrides with previous established connections.

Moreover, the linker checks that for each component, there exist a connection for all the
interface it uses. All the checks use the symbol table defined in Section 3.1.

After the verification phase, the function qualify_components qualifies the external inter-
face names with the used component as stated by the connection statements. The qualifica-
tion uses a symbol table constructed during the previous phase, and when an external name
has to be qualified, it performs a lookup operation on the table to find the right component
implementing the function. Figure 2 shows how an external name (i.e. the sort function)
is qualified.

5 Code generation phase
This section explains how a µComp program generates LLVM bitcode.

5.1 LLVM
The LLVM Project is a collection of modular and reusable compiler and toolchain technolo-
gies.[LA04] The assignment requests to use LLVM in order to produce LLVM bitcode (which
is a low-level Intermediate Representation used by the infrastructure), using the OCaml
bindings that provide the needed LLVM API to OCaml programs 4. The next subsection
will describe in details how the API have been used to generate bitcode from the qualified
typed AST.

5.1.1 Compilation Strategy

µComp programs are made of several components and interfaces, the latter construct is
not needed for this compiler phase, thus we will focus on how to generate bitcode for the
components. This phase performs a post-order tree walk on the AST to emit the bitcode.

4For further details, see: https://opam.ocaml.org/packages/llvm/
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interface Sorter {
def sort(a: int[], size: int): void;

}

component MergeSort provides Sorter {
def sort(a: int[], size: int): void {

// Implement merge sort...
}

}

component Entry provides App uses Sorter {
def main(): int {

var arr: int[16];
// ...
// According to the connection,
// MergeSort.sort will be invoked.
sort(arr, 16);
return 0;

}
}

connect Entry.Sorter <- MergeSort.Sorter;

Ast.Call(
Some "Sorter", "sort", [...]

) -> Ast.Call(
Some "MergeSort", "sort", [...]

)

Figure 2: A simple program used to show the linking phase.

The compilation strategy for components is described as following. First, we create a global
LLVM module from the given LLVM context. Second, inside the global module, a builder for
global constructor function will be generated (details will be described in subsection 5.1.1).
Then, from the prelude interface the functions contained in the signature will be declared as
external (since these functions are defined inside the run-time support). After that, for each
component member, declare it inside a global LLVM module assigning a mangled name. The
name mangling process is computed by the Codegen.name_mangling function, which takes
the component and a member name to produce a unique string formatted in the following
way: __(lowercase component name)_(lowercase member name). During the declaration
process, if a component provides the App interface it means that there is the main function
defined in it, so the name mangling procedure is not invoked because that function will be
the entry point of our program. All the members declarations will be put inside a global
symbol table containing llvalue (LLVM values) that will be used later in the process. Fi-
nally, the code generation phase defines each component contained by the AST.

For the function definitions, the code generator defines the type for a function, and it creates
an entry block where there are contained parameter variables allocation if any. During the
generation, a new symbol table containing llvalue for the function is created, and param-
eters name will be put on it. The arguments are allocated and stored inside the stack 5.
Then, the generation for the function body begins using the created builder for it. After the
bitcode generation for the function, some helper utilities are executed onto the generated
code (these utilities are better explained in the Additional Notes subsection).

Component fields are treated like global variables. The inline initialization of these fields is
explained in the ”How global variable initialization is handled”.

Additional Notes

During the code generation phase, there are several ‘issues’ to be addressed. The next
subsections will explain design choices taken to handle these situations.

5The parameter type T[], array reference, is mapped into a LLVM pointer type.
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Merge of multiple return instructions

Once a µComp function is compiled into LLVM bitcode, the function unify_blocks will be
called in order to remove eventually multiple return instructions. This function is invoked
only for µComp functions returning values different from void, since the LLVM bitcode is in
Single Static Assignment form, there can only be one return instruction. 6 To address this
requirement, the unify function iterates over the basic block to create a list of blocks having
return statements. If the created list has length ≤ 1 then no unify operation is performed,
otherwise a new basic block called ”ret.merge”, containing a ϕ node whose value will be
returned, will be created at the end of the function. For each basic block inside the previous
list, the return value is taken, and it will be added to the incoming values of the ϕ node.
Furthermore, the operation removes the extra return statements inside the basic blocks and
replaces it with an unconditional jump to the ”ret.merge” basic block.

How dead code after the return function is handled

The µComp semantic analysis phase accept functions with multiple return statements
at the same scope block level. But, once the return instruction is reached, the code
after (called ”dead code”) will never be executed. To remove dead code, the function
remove_useless_returns is called when the µComp function is compiled into LLVM bit-
code. The function will iterate the instructions contained in each basic block. If a return
statement is encountered during the instruction traversal, a counter will be increased. The
next instructions after the return will be added to a removal list. Once the iteration termi-
nate, the extra instructions will be deleted from the basic blocks.

How global variable initialization is handled

One of the extra addition to µComp language was the possibility to declare and initialize
variables in one line. Starting from local variables there were not any problems for the
implementation, but for the global ones a problem raised up. Since LLVM global variables
are initialized with a scalar value, if the µComp global variable initialization contains a
non-trivial expression7, then LLVM cannot generate an initial value for that variable.

Thus, I had two ways to handle this issue:

1. forbid the initialization of a global variable with non-trivial expressions during the
semantic analysis phase; or

2. understand how to generate LLVM bitcode that can solve the problem.

In the end, I choose the second one. In fact, reading the LLVM documentation and seeing
how the Clang compiler handles this problem8, I decided to use the global constructors
functions, which are functions injected by the compiler before the execution of the main
function 9. LLVM APIs define an intrinsic global variable called llvm.global_ctors which
is a global constant array of pointers to functions. All the functions defined inside the array
will be invoked before the execution of the main function. The code generation phase adds
the @_MUCOMP__global_ctors function to this array, that is used to invoke some helper
functions. For this project, only the @_MUCOMP__global_var_initializer is invoked, and
it is used to initialize global variables so that we can write non-trivial LLVM bitcode.

Listings 11 and 12 show how two global variables will be initialized.

component EntryPoint provides App {

var foo: int = 30;
var bar: int = 12 + foo;

6According to LLVM documentation, function returning void as value are not constrained to this require-
ment.

7Here non-trivial expressions means all the one which not contain use of variables or calls to function.
8To inspect the behaviour of Clang I used ”Compiler Explorer” (https://godbolt.org/), a tool suggested

during lectures.
9For further details see: https://wiki.osdev.org/Calling_Global_Constructors
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def main() : int {
print(bar);
return 0;

}

}

Listing 11: ”A program with non-trivial initialization global variables statements.”

@llvm.global_ctors = appending global [1 x { i32, void ()*, i8* }] [{ i32, ←↩
void ()*, i8* } { i32 65535, void ()* @_MUCOMP__global_ctors, i8* null ←↩
}]

@__entrypoint_foo = global i32 0
@__entrypoint_bar = global i32 0

define internal void @_MUCOMP__global_ctors() {
entry:

call void @_MUCOMP__global_var_initializer()
ret void

}

define void @_MUCOMP__global_var_initializer() {
entry:

store i32 30, i32* @__entrypoint_foo, align 4
%0 = load i32, i32* @__entrypoint_foo, align 4
%temp.add = add i32 12, %0
store i32 %temp.add, i32* @__entrypoint_bar, align 4
ret void

}

Listing 12: ”LLVM bitcode to initialize global variables.”

Alloca Instructions

The alloca instruction generation is performed by aux_build_alloca function, which takes
an identifier, a µComp type and the fun_env. All the variable allocations are hoisted on top
of the function entry. The reason of this operation is that if we allocate a variable (scalar
or arrays) in a loop, there will be a number of allocations, at most equal to the number of
iterations, of that variable onto the stack, resulting, in the best case scenario, to a stack
overflow (on my machine a segmentation fault was raised up). Using the hoisting approach,
the program semantic is not altered at all, and each allocation is placed next to the previous
one. Thus, we can write code like the one shown in Listing 13, which will be compiled into
Listing 5.1.1.

component EntryPoint provides App {
def main() : int {

var i: int;
for (i = 0; i < 0x7FFFFFFF; i++) {
var arr: int[16];
print(i);

}
return 0;

}
}

Listing 13: ”Program that loops to the maximum integer.”

define i32 @main() {
entry:

%i = alloca i32, align 4
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%arr = alloca [16 x i32], i32 16, align 4
store i32 0, i32* %i, align 4
br label %for.cond

for.cond: ; preds = %for.loop, %entry
%0 = load i32, i32* %i, align 4
%temp.less = icmp slt i32 %0, 2147483647
br i1 %temp.less, label %for.loop, label %for.after_loop

for.loop: ; preds = %for.cond
%1 = load i32, i32* %i, align 4
call void @__prelude_print(i32 %1)
%2 = load i32, i32* %i, align 4
%3 = add i32 %2, 1
store i32 %3, i32* %i, align 4
br label %for.cond

for.after_loop: ; preds = %for.cond
ret i32 0

}

Short-circuit evaluation

Like many modern programming languages, µComp uses short-circuit evaluation for the
&& and || boolean operators. The generation of boolean short circuit expression is accom-
plished using eval_bool_and_exp (for logical ‘and’ expressions) and eval_bool_or_exp (for
logical ‘or’ expressions) functions defined inside codegen.ml. Both functions use the ϕ 10

node to determine the final expression value.

(a) Control flow graph for a short-circuit conjunc-
tive boolean expression A0 ∧A1 ∧ · · · ∧An.

(b) Control flow graph for a short-circuit disjunc-
tive boolean expression A0 ∨A1 ∨ · · · ∨An.

Figure 3: Control Flow Graphs for boolean expressions containing logical ∧ and ∨.

Figure 3 shows how short-circuit boolean expressions are translated into a Control Flow
Graph (from now on abbreviated as CFG). Each node is a llbasicblock and edges without

10https://en.wikipedia.org/wiki/Static_single_assignment_form
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label indicates unconditionally branches. For boolean expressions in conjunctive form, like
the one shown in Figure 3a, the evaluation follows this schema: evaluates the first term, if
it is true then jump to the next basic block to evaluate the next term, otherwise, since the
term is false, for the annulment law in boolean algebra, the formula will evaluate to false,
jumping to the last block (and.false). For boolean expressions in disjunctive form, shown
in 3b, the translation schema is similar to the previous one, but if one expression evaluates
to true, it will jump directly to the last block (or.true). Both second last nodes in CFGs
have a direct edge to the last block.

Listing 14 and 15 show how the test test-if6.mc is compiled into LLVM bitcode, handling
short-circuit boolean expressions. Figure 4 shows a graphical representation of the CFG.

def main() : int {
var i : int;
i = 42;
if(true && change(&i,0) || change(&i,1))

print(i);
else

print(51);
return 0;

}

Listing 14: ”Main function from test-if6.mc file.”

define i32 @main() {
entry:

%i = alloca i32, align 4
store i32 42, i32* %i, align 4
br i1 true, label %and.true, label %and.false

and.true: ; preds = %entry
%call.__application_change = call i1 @__application_change(i32* %i, i32 ←↩
0)

br label %and.false

and.false: ; preds = %and.true, %entry
%0 = phi i1 [ true, %entry ],

[ %call.__application_change, %and.true ]
br i1 %0, label %or.true, label %or.false

or.false: ; preds = %and.false
%call.__application_change1 = call i1 @__application_change(i32* %i, i32 ←↩
1)

br label %or.true

or.true: ; preds = %or.false, %and.false
%1 = phi i1 [ %0, %and.false ], [ %call.__application_change1, %or.false ←↩
]

br i1 %1, label %if.then, label %if.else

if.then: ; preds = %or.true
%2 = load i32, i32* %i, align 4
call void @__prelude_print(i32 %2)
br label %if.merge

if.else: ; preds = %or.true
call void @__prelude_print(i32 51)
br label %if.merge

if.merge: ; preds = %if.else, %if.then
ret i32 0
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}

Listing 15: ”Emitted LLVM code for the main function.”

Figure 4: CFG for test-if6.mc, generated by opt utility provided by LLVM.

5.2 Runtime Support
In addition to the runtime support provided by the professor, I added several functions to
generate integer random numbers, print characters onto screen, and so on …
These functions rely on C Standard Library: libc.
The following list contains all the extra function added inside the Prelude interface with
their respective description.

• def time(): int: this function relies on libc time function, it just returns the time
as the number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).

• def set_rand_seed(seed: int): void: initialize the libc pseudo random number
generator using the seed parameter as initial seed.

• def rand(): int: returns a random number using the libc rand function. In macOS,
the function relies on arc4random to generate random numbers.

• def ifloat(from: float): int: converts a floating point number into an integer
one.

• def fint(from: int): float: converts an integer into a floating point number.

• def get_float(): float: reads a floating point number from the stdin.
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• def get_char(): char: reads a character from the stdin.

• def print_f(n: float): float: prints a floating point number (with a precision of
four decimal digits) onto the stdout.

• def putc(c: char): void: prints a character onto the stdout.

• def putendl(): void: simply prints a newline onto the stdout.

• def abort(exit: int): int: it may be used to abort the program execution, return-
ing exit parameter as exit code.

The functions listed before can be found inside rt_support.c file. Each prelude function
is name mangled as described in Section 5.1.1. The Listing 16 shows a prelude function to
generate a random number.

int32_t __prelude_rand() {
#ifdef __OSX__

return (int32_t) arc4random();
#else

return (int32_t) rand();
#endif

}

Listing 16: ”Prelude’s rand function implementation inside the run-time support file.”

5.3 Optimizations
The optimization phase happens after the LLVM module generation. The optimizer uses
the provided optimizations by the professor without any addition.

On my computer, I did not succeed to test the const_propagation optimization because
the Opam LLVM package on macOS has several issues.

5.4 Tests and compilation
Each unit test contained inside the test directory has been verified using the provided shell
script test_all.sh.

To compile a µComp program, the user requires the following dependencies:

• OCaml >= 4.12.0

• Menhir >= 20210419

• ppx_deriving >= 5.2

All these packages can be installed using Opam package manager. To run the compiler, the
user uses the dune 11 build system invoking the command shown in Listing 17.

11Dune is the default build system for OCaml. For further details, see: https://dune.build
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# Compile a muComp program
dune exec mcompc -- [options] <input_file>.mc

# Available options to the compiler
-p Parse and print untyped AST
-t Type check and print the typed AST
-l Link and print the linked AST
-d Compile and print the generated LLVM IR
-c Compile the source file (default)
-o Place the output into file (default: a.bc)
-O Optimize the generated LLVM IR (default: false)
-verify Verify the generated LLVM module (default: false)
-help Display this list of options
--help Display this list of options

Listing 17: ”Compiler help screen.”

The compiler will output LLVM bitcode to be compiled using the LLVM system compiler
(llc). Once the compilation is done, to make the executable, the user will use clang 12 to
compile the run-time support file (rt_support.c) into an object file. Finally, the user can
produce the final file linking the compiled LLVM bitcode and run-time support object using
clang.

6 Conclusions
We have seen what is µComp programming language and how it is compiled into LLVM
bitcode through each previously described phase.

6.1 Future Developments
The compiler can be further improved by using the incremental API by Menhir, which
produce better error messages for the parsing phase. The semantic analysis phase can be
improved as well (i.e. to detect if all the paths in a function Control Flow Graph lead to
a return instruction). The LLVM bitcode can be optimized for the global variable initial-
ization, if an initial expression is trivial we could compute the initial value directly without
using the global constructors.
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