
Department of Computer Science
Bachelor in Computer Science

Improving the support for 3D scanned
data in MeshLab and PyMeshLab

Supervisors:
Paolo Cignoni

Alessandro Muntoni

Presented by:
Gabriele Pappalardo

Academic Year 2020/2021

Abstract

MeshLab, and its Python counterpart PyMeshLab, have been widely used for processing 3D
scanned data. However, some functionalities of MeshLab that are entirely interactive have
not been transferred into the scriptable framework under Python. Moreover, an emerging
file format for distributing scanned data still is not supported by MeshLab. In this thesis,
we have improved the capability of MeshLab to handle different kinds of 3D scanned data
by adding the support for 3D scanned LIDAR data (E57). Moreover, by refactoring the core
part of the alignment tools, we allowed higher flexibility in their usage in MeshLab and
made them available in PyMeshLab.

Contents

1 Introduction 1
1.1 Introduction to MeshLab . 1

1.1.1 MeshLab’s Goals and Impact . 2
1.2 MeshLab’s plugins architecture and goals . 2

1.2.1 IOPlugin . 3
1.2.2 FilterPlugin . 4
1.2.3 EditPlugin . 5

1.3 The Python Counterpart: PyMeshLab . 6
1.3.1 Motivations . 7
1.3.2 PyMeshLab’s internals . 9

2 Mesh, Point Clouds, and VCGLib 11
2.1 Mesh . 11
2.2 3D Scanning . 12
2.3 Point Clouds . 13
2.4 The VCG library . 14

2.4.1 Encoding a Mesh . 15

3 IOPlugin: E57 file format 17
3.1 Why do we need a standard file format for Point Clouds 17
3.2 Current file format standards: LAS vs E57 . 17
3.3 The E57 file format . 18
3.4 Implementation of libE57 inside MeshLab . 18

3.4.1 E57IOPlugin . 19
3.4.2 Encoded 2D Images: what went wrong 20

3.5 E57 files tested . 21

4 FilterPlugin: ICP, Overlapping Meshes & Global Alignment 26
4.1 What is the Point Set Registration problem 26

4.1.1 The Iterative Closest Point Algorithm 26
4.1.2 ICP MeshLab’s Implementation . 27

4.2 Multiview Registration . 27
4.3 Refactoring . 28

4.3.1 “Decoupling” the MeshTree and the OccupancyGrid classes 29
4.4 Implementation of the filters . 29

4.4.1 First Filter: local alignment between two meshes 30
4.4.2 Second Filter: overlapping meshes . 30
4.4.3 Third Filter: global alignment between meshes 31

4.5 Some limitations in PyMeshLab . 32
4.6 Alignment Tests . 34

5 Conclusions 39
5.1 Contributions . 39
5.2 Future developments . 39
5.3 What has been learned . 39

6 Acknowledgements 41

i

Chapter 1

Introduction

This chapter will introduce MeshLab and PyMeshLab, the open-source mesh processing
system where I have developed the contribution described in this thesis. The second sec-
tion of this chapter will talk about the MeshLab’s plugin architecture and will introduce a
general description about the plugins that I have implemented to improve the support for
the loading and processing of 3D scanned data.

1.1 Introduction to MeshLab
MeshLab [1] (https://meshlab.net) is an open-source, extensible program written in C++
for the elaboration and the processing of meshes, developed by the Visual Computing Lab
of ISTI-CNR. The software offers many tools useful for editing, cleaning, recovering, in-
specting, rendering, texturing and converting meshes. MeshLab comes under the GPL 3.0
license, and it’s available on Windows, Linux and macOS.

Figure 1.1: MeshLab running on macOS.

MeshLab is compiled in two versions: single-precision (32 bit) and double-precision (64
bit) modes. Its source code can be found on ISTI-CNR GitHub repository at this link:
https://github.com/cnr-isti-vclab/meshlab.

From a developer’s perspective, an important characteristic of MeshLab is that it has been
designed to be modular and extensible thanks to a plugin architecture that will be explained
in Section 1.2.

1

https://meshlab.net
https://github.com/cnr-isti-vclab/meshlab

1.2 Improving the support for 3D scanned data in MeshLab and PyMeshLab

1.1.1 MeshLab’s Goals and Impact
The idea behind MeshLab is to provide a set of mostly automatic tools for processing, an-
alyzing and showing 3D models. These characteristics allowed the software to be used in
various environments: for the creation of assets in gaming industry [2] [3] [4], for [5], for the
analysis of meshes obtained by 3D scanning, for the visualization of biomedical data [6], for surgical
simulations field [7] [8] and for the conversion of 3D data between different formats. MeshLab
has established itself as an open-source main software for the data management of objects
acquired by 3D scanners and for the treatment and preprocessing of models to be used for
3D printing.

The software had a strong impact on the “Cultural Heritage” field, where 3D scanning, vi-
sual presentation and rapid prototyping are now widely accepted as enabling technologies,
provided that their use is not limited by the cost and complexity of using survey systems
and commercial software. Particularly with the emergence of low-cost 3D scanning tech-
nologies (such as photo reconstruction techniques), MeshLab has become the software of
choice for managing these data.

1.2 MeshLab’s plugins architecture and goals
As said in the introduction of MeshLab, it was designed to be extensible, meaning it’s pos-
sible to write separate plugins that allow the addition of new processing capabilities. These
additional components are easily writable by anyone who knows how to code using the
C++ programming language. According to the kind of functionality they add, there exist
various categories of plugins inside MeshLab:

1. IOPlugin: allows importing meshes from new file formats (such as .E57, see Section
3).

2. FilterPlugin: implements automatic, black box processing algorithms that can be
applied to one or more meshes according to defined parameters (like random mesh
coloring).

3. EditPlugin: provides tools that need some kind of interaction with the mesh. Editing
tools are the most complex and most tightly coupled with the rest of MeshLab, given
the fact that they can grab GUI events (like the mouse events) and customize the
rendering process.

4. RenderPlugin: are used to customize the rendering process of the displayed meshes.
5. DecoratePlugin: are used to implement the decorators, which are visualization aids

and glyphs that are overlaid on the rendered mesh to help show some data about a
mesh (e.g. the normals of the surface).

All the plugins inherit the MeshLabPlugin and MeshLabPluginLogger interfaces, that
are the base for all MeshLab plugin classes. The first class represents the library file of the
plugin, since all the MeshLab’s plugins are compiled as dynamic libraries, so they can be
loaded during the runtime. The second one is a utility class used to log information about
the plugin itself. All the plugins are loaded using the PluginManager, which is a con-
tainer object designed to load at runtime the dynamic libraries and organize them in order
to expose the plugin functionalities. The PluginManager and all the Plugin interfaces are
part of the so-called MeshLab Common Framework. The MeshLab Common Framework does not
contain GUI data structures and routines (which are part of the MeshLab GUI), but just the
core functionalities, interfaces and data structures of the software that need to be shared be-
tween the GUI (or a CLI like PyMeshLab, see section 1.3) and the plugins. In the Figure 1.2
all the plugins categories contained in MeshLab are shown.

For the objectives of this work, only two plugin categories were used: the IOPlugin and the
FilterPlugin, that will be explained in detail in the next sections.

For anyone who would like to create a new plugin for MeshLab, just see the examples con-
tained in this repository: https://github.com/cnr-isti-vclab/meshlab-extra-plugins.

2

https://github.com/cnr-isti-vclab/meshlab-extra-plugins

1.2 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Figure 1.2: UML [9] class diagram for MeshLab’s Plugins. The Plugin Manager
manages all the plugins loaded inside MeshLab. Only the IOPlugin and the Fil-
terPlugin inner methods are shown because they are the main used in this work.

1.2.1 IOPlugin
This category of plugins has several methods used to load and save images, and to load
2D images as well. For example, MeshLab supports the new glTF 1 file format created by
Khronos Group, which is designed to become the new standard for three-dimensional models
and scenes [10]; the authors themselves defined the standard as “the JPEG for 3D”. The
support for this file format is possible thanks to IOglTF plugin, which is contained inside
MeshLab. The Figure 1.3 shows a glTF file loaded inside the software.

Figure 1.3: Adam’s Head. This is a glTF file loaded into MeshLab 2021.07. Authors:
Unity Technologies ©. The screenshots were captured using MeshLab 2021.07.

1glTF: Graphics Language Transmission Format

3

1.2 Improving the support for 3D scanned data in MeshLab and PyMeshLab

IOPlugin access API

Switching to a developer’s view point, the Figure 1.2 lists some important methods used for
the work of this thesis:

1. std::list<FileFormat> IOPlugin::exportFormats: returns a list of all the
output files supported by the plugin.

2. std::list<FileFormat> IOPlugin::importFormats: returns a list of all the
input files supported.

3. void IOPlugin::save: is called by the framework every time a mesh has to be
saved in a file.

4. unsingned int IOPlugin::numberMeshesContainedInFile: returns the num-
ber of meshes that the open function is going to load from the file given as parameter.
The default return value is one. If the file format can contain just one mesh per file,
then there is no need to re-implement the function.

5. void IOPlugin::open(..., MeshModel& meshModel>): is called by the frame-
work every time a mesh is loaded, who would like to extend the file formats has to
implement this method. This method is useful when the file to load contains only
one mesh.

6. void IOPlugin::open(..., std::list<MeshModel&> meshModelsList):
this is an overload for the open function introduced before, it allows opening dif-
ferent meshes from a file containing more than one mesh. This function has been
implemented during the work and the reason will be explained in Section 3.4.

The IOPlugin allowed us to achieve an objective of this work, that is, the support for a new
file format, called E57. The plugin will be discussed in Section 3.

1.2.2 FilterPlugin
The second plugin category used for this thesis is the FilterPlugin. Before technically de-
scribing the main access APIs of these plugin types, let’s show an example. Suppose we
have a point cloud (described in Chapter 2) and we would like to perform the surface re-
construction (Section 2.2) i.e. building a triangle mesh that approximates correctly this set
of isolated points in space. In MeshLab, there are many possibilities for such a problem.
One of the most used is the “Surface Reconstruction: Screened Poisson” filter, which uses the
algorithm proposed by Michael Kazhdan and Hugues Hoppe in their paper “Screened Poisson
surface reconstruction” [11]. The Figure 1.5 shows us the results of this filter plugin. In
practice, filter plugins encapsulate the concept of black box processing that takes as input
one or more meshes and a set of parameters; after some automatic processing, gives back
a well-defined set of meshes as a result. Filter plugins are the core processing power of
MeshLab and expose more than two hundred different functionalities for many purposes,
like cleaning, measuring, analyzing, checking, remeshing, transforming, and so on.

It is important to underline the black box nature of filter plugins because it is the reason
for which it is possible to automatically translate filter actions into Python functions (see
Section 1.3).

FilterPlugin access API

When creating a FilterPlugin, the developer defines different actions in an enumerator, which
will be exposed to the MeshLab’s user. As for the previous section, the Figure 1.2 lists the
main methods used to implement the alignment filter that will be discussed in Chapter 4:

1. QString FilterPlugin::filterName: returns a string describing each filtering
action defined in the action enumerators;

2. QString FilterPlugin::filterInfo: returns a long description for each fil-
tering action.

4

1.2 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Figure 1.4: Flow diagram showing the principle behind the filter plugins. The
user gives as input the meshes to filter and several parameters. Once the filter ex-
ecution starts, it produces a set of new meshes. The filter acts as a black box be-
cause the user cannot see what elaborations are being performed.

(a) Pre-filtering (b) Post-filtering

Figure 1.5: Chameleon. The figures above show a chameleon represented as a
point cloud reconstructed in a surface using the filter “Surface Reconstruction:
Screened Poisson”. The screenshot has been captured using MeshLab 2021.07.

3. RichParamaterList FilterPlugin::initParamaterList: this function is
called to initialize the list of parameters for each action defined in the plugin.

4. std::map<std::string, QVariant> FilterPlugin::applyFilter: this func-
tion is the filter plugin’s main core. It applies the selected action with the already es-
tablished parameters, and it is called by the plugin framework. The function returns
a map of (string, value) pairs, that will be the output of command-line calls of the
filter using PyMeshLab.

1.2.3 EditPlugin
As explained in Section 1.2, the EditPlugin are additional components that allow a user to
interact directly on a mesh with MeshLab using an edit tool, capturing user interface events,
such as mouse clicks, keyboard input and other inputs coming from different peripherals.
MeshLab has several edit tools: manipulators tool, measuring tool, Z-painting tool, pick points,
selection of vertex clusters, quality mapper and so on.

One of them is important for this work, that is, the align tool (see Figure 1.7), which its
code has been refactored to allow the PyMeshLab users to use the alignment algorithms
implemented inside the software, since due to the interactive nature of the plugin, a CLI 2

2CLI: Command Line Interface

5

1.3 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Figure 1.6: A Zoom on the various interactive Edit Tools that are exposed in tool-
bar of MeshLab. From left to right: Align, Manipulators, Measuring, Raster align-
ment, Z-painting, PickPoints, Select Vertex Clusters, Select Vertices on Plane, Quality
Mapper.

user cannot interact with the tool. The refactoring process will be described in Chapter 4.

Figure 1.7: The dialog of the Align Tool. The tool offers several ways to perform
the alignment process manually and automatically between the meshes. In the
standard pipeline, the user starts by choosing a base mesh and then manually per-
forming a rough alignment with other meshes. Once this manual rough align-
ment process is done, the user can perform the global alignment routine, clicking
the Process button. The screenshot has been captured using MeshLab 2021.07.

1.3 The Python Counterpart: PyMeshLab
PyMeshLab [12] is a Python 3 library that exposes most of the MeshLab functionalities.
PyMeshLab has been made possible by the well-defined black box nature of filter plugins,
in fact, most of PyMeshLab is automatically built from the same code of MeshLab, filters
are translated into python functions whose parameters and interfaces are automatically de-
rived from the declarative nature of the MeshLab plugins.

It is possible to download the library using the standard Python package manager: pip.
Using PyMeshLab is elementary, for example, if a user would like to load a point cloud
contained in a E57 file simply types:

1 import pymeshlab
2
3 # Initialize the MeshSet as a new Workspace
4 meshSet = pymeshlab.MeshSet()
5
6 # Load the mesh pointCloud.e57 inside the MeshSet
7 meshSet.load_new_mesh('/path/to/mesh/pointCloud.e57')

3Python is a popular scripting programming language: https://www.python.org

6

https://www.python.org

1.3 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Figure 1.8: Using PyMeshLab inside a JupyterLab notebook. A simple script that
use MeshLab functionality to create a test shape, refine the mesh, and compute an
ambient occlusion factor over it. The result is shown using the k3d Python visu-
alization library, by simply passing the vertex and face arrays provided by Mesh-
Lab.

1.3.1 Motivations
By default, MeshLab provides a GUI 4 written using the Qt framework for easy portability
on many platforms. However, while a GUI allows to easily and interactively experiment
with the many possibilities of processing meshes in an interactive way, in many cases users
need to perform repetitive tasks like applying the same set of filtering actions to a large set
of meshes. This kind of advanced scripting activities is missing from the desktop version
of MeshLab and is the reason for having a Python library exposing most of the processing
capability of MeshLab. In this way, using PyMeshLab, eventually coupled with one of the
many Python libraries for rendering 3D meshes and using notebooks (i.e., Jupyter, Figure
1.8), people can experiment with the many algorithms of MeshLab in a more programmatic
way.

PyMeshLab offers all the filters contained in MeshLab, plus the capability to create new
projects which can be open in MeshLab. For further information, check the documentation
at the following link: https://pymeshlab.readthedocs.io.
Let’s illustrate two use case scenarios to show the potential of PyMeshLab.

Case 1: Color Processing

Suppose we have a folder containing only gray-scale point clouds. We would like to color
the points depending on their position in space, in a sense that near vertices will be painted
with similar colors. This filter is called Perlin Color. Doing this task inside standard MeshLab
can be very long, since a user has to do:

1. Open MeshLab and create a new project.
2. Open the interested meshes.
3. For each mesh, it has to open the filter’s window, configure the parameters and then

apply the filter and see the results.
4GUI: Graphical User Interface

7

https://pymeshlab.readthedocs.io

1.3 Improving the support for 3D scanned data in MeshLab and PyMeshLab

If we had 100, or even more, meshes, this task would take a huge amount of time. With
PyMeshLab, the user could write a script that loads the meshes inside a MeshSet and then
simply applies the filter. The listing below shows the script:

Listing 1 Perlin Color script.
1 import os
2 import pymeshlab
3
4 meshFolderPath = "/path/to/meshes"
5 outputFolderPath = meshFolderPath + "/out"
6
7 meshSet = pymeshlab.MeshSet()
8 redColor = pymeshlab.Color(255, 0, 0, 255)
9 blueColor = pymeshlab.Color(0, 0, 255, 255)

10
11 for meshFile in os.listdir(meshFolderPath):
12
13 # Load the mesh inside the MeshSet
14 meshSet.load_new_mesh(meshFolderPath + meshFile)
15
16 # Apply the 'Perlin Color' filter.
17 meshSet.perlin_color(redColor, blueColor)
18 outputFile = outputFolderPath + "pc_" + meshFile
19
20 # Save the edits applied into a new mesh file
21 meshSet.save_current_mesh(outputFile)

The script imports the pymeshlab library and then creates a new MeshSet. As described
by Alessandro Muntoni [12], the MeshSet class represents a set of meshes, each one with its
own unique ID, where every mesh corresponds to a layer inside MeshLab. Automatically,
when a mesh is loaded it becomes the current one and, on the invoking of a filter, the edits
will be applied on it.

Case 2: Faces Cleanup

Here is another use case scenario. Suppose we have a set of scans containing a 3D model
of a bunny statue that we would like to align. The scans are dirty because the initial 3D
scanner couldn’t see behind a certain spot, therefore some faces of the bunny have a long
edge (see Figure 1.9). Figure 1.10 shows what we would like to achieve.

Figure 1.9: The faces we would like to remove are highlighted in red.

If we had to clean all the meshes manually, we would repeat the cycle described in the
previous subsection plus additional steps for each mesh:

8

1.3 Improving the support for 3D scanned data in MeshLab and PyMeshLab

(a) Side 1 - Pre (b) Side 2 - Pre (c) Side 3 - Pre (d) Side 4 - Pre

(e) Side 1 - Post (f) Side 2 - Post (g) Side 3 - Post (h) Side 4 - Post

Figure 1.10: Result of the script. The first row contains all the images before the
script execution, the second row shows the results with the cleaned faces.

1. choose a threshold for the edges;
2. select the faces that match the threshold;
3. invoke the “Delete Selected Faces” filter;

Then again, PyMeshLab comes in our hand, and a user could write a script like the one
inside the Listing 2 to do all these operations in just one click.

Listing 2 Cleanup script described in Section 1.3.1
1 import os
2 import pymeshlab
3
4 meshFolderPath = "/path/to/meshes"
5 outputFolderPath = meshFolderPath + "/out"
6
7 meshSet = pymeshlab.MeshSet()
8 for meshFile in os.listdir(meshFolderPath):
9

10 # Load the mesh inside the MeshSet
11 meshSet.load_new_mesh(meshFolderPath + meshFile)
12
13 # Select the faces according to a threshold
14 meshSet.select_faces_with_edges_longer_than(0.02)
15 # Delete the selected faces
16 meshSet.delete_selected_faces()
17
18 outputFile = outputFolderPath + "df_" + meshFile
19 # Save the edits applied into a new mesh file
20 meshSet.save_current_mesh(outputFile)

1.3.2 PyMeshLab’s internals
PyMeshLab expose the filtering functionality of MeshLab. MeshLab filtering plugins con-
tain a set of actions that correspond to filters in the MeshLab interface (that can be accessed
in MeshLab either by the menus structure or using the search functionality). The library’s
functions are automatically created through the use of pybind11 [13]. As explained by its

9

1.3 Improving the support for 3D scanned data in MeshLab and PyMeshLab

developers: “PyBind11 is a lightweight header-only library [14] that exposes C++ types in
Python and vice versa, mainly to create Python bindings of existing C++ code”.

PyMeshLab has two main cores: the first one consists of the definition of the binding classes
that can be called in Python; the second one, the most important, performs the actual
binding with the MeshLab Common framework (described in Section 1.2), linking the ex-
isting MeshLab’s plugins into the Python module. When the module is loaded inside a
script, an instance of the Plugin Manager loads all the MeshLab’s plugins and, thanks to
pybind11, a dynamic binding process starts. This routine seeks all the loaded plugins and
binds the main plugin methods into the MeshSet class, exposing the plugin functionalities
to the Python environment. Finally, when the loading ends, the user can use the scripts as
if on MeshLab. PyMeshLab doesn’t bind the EditPlugin (Section 1.2.3) since they are meant
for user interaction activities, and they can only be used into the MeshLab GUI, which is
not part of the MeshLab Common framework.

The source code of PyMeshLab contains the file meshset_helper.cpp, which is of great
relevance because it contains the implementation of the functions defined inside theMeshSet
Python class, previously seen in the first use case in Section 1.3.1. This set of functions
contains the pybind11:dict toPyDict(...) which is the one that converts the map
obtained by applying the filter described in Section 1.2.2 into a Python dictionary. This
function allows the access to the computed data by the execution of a filter and allows the
parsing process to support different types, such as int, double, Box and Matrix. However,
thanks to the work of this thesis, we have found a limit of the function itself that will be
explained later in Section 4.5.

10

Chapter 2

Mesh, Point Clouds, and VCGLib

In this chapter, before describing the work done inside MeshLab, we introduce a few con-
cepts, data structures and the library that we used in the current implementation.

2.1 Mesh
Let’s introduce the concept of mesh as the way in which we represent digitally the actual
shape of a three-dimensional object. There exist several ways to represent these objects,
the one which we are interested in, is the approach describing the surface of an object us-
ing by discretizing it into a set of polygonal faces. Specifically, we choose the triangle as the
only used polygon because it has a compelling descriptive power: we can describe the other
polygons as a composition of triangles. Plus, the triangles have some interesting math prop-
erties, allowing a better modelling and rending algorithms design. The set of faces takes
the name of mesh. Now, let’s illustrate two approaches to represent a mesh.

Figure 2.1: The surface of the Stanford’s Bunny, represented as a mesh composed
by a collection of triangles.

Definition 2.1.1 (Naive Mesh) A mesh M is a list of faces, each of which makes explicit the co-
ordinates of the vertices that delimit it:

M : T = (t1, t2, . . . , tn)

where ti = (pi1, pi2, pi3) and pi = (xi, yi, zi).

This first representation is extremely redundant because each vertex is repeated in all the
incidents faces 1, furthermore is inefficient because we can’t find easily the incidents faces
on a defined vertex or find the adjacent faces. Hence, let’s try to give another definition.

Definition 2.1.2 (Indexed Mesh) A mesh M is a tuple made by two sets: the vertices V and the
faces T .

1Two faces are incidents if they have at least one element in common.

11

2.2 Improving the support for 3D scanned data in MeshLab and PyMeshLab

M = (V, T)

V = {vi : vi = (xi, yi, zi), vi ∈ R3}
T = {ti : ti = (vj , vk, vl), vj,k,l ∈ V }

This second definition is called indexed mesh, in which a face list is being associated with the
vertices list, thanks to this approach redundancy reduces.

2.2 3D Scanning
3D scanning is the process of capturing the shape of a physical object and replicating it as a
3D model inside a computer [15]. 3D scanning is not so easy, before to produce a final 3D
model the data acquired from a scanner must go under the 3D scanning pipeline, which is
a list of steps to re-create the physical object, we can summarize the pipeline in three main
steps:

1. Acquisition of multiple range maps.
2. Alignment and merging of the scans.
3. Applying a surface reconstruction algorithm.

Acquiring a physical object is done in several ways. The tools that scan an object are called
3D Scanners and there exist different types of them, but we are going to focus on the optical
ones which are divided in:

• Active: emit some kind of ray of lights and detect its reflection in order to probe an
object (x-ray, ultrasound).

• Passive: they do not emit any kind of radiation themselves, but instead rely on detect-
ing the reflection of ambient radiation.

There are two famous optical scanning techniques. The first one, an active, is called laser
scanning, in which a three-dimensional scanner casts some rays of light onto a surface of
an object and the time between the casting and the moment in which the laser reflects off
the object is measured. The second, a passive, is called photogrammetry, where some spe-
cial two-dimensional images are cast on a surface of an object to triangulate the points and
tracks them in a three-dimensional space.

Almost all optical scanner uses a camera as input device. What is recovered after a single
shot is a depth value for each pixel in its sensor, which is converted in a 3D point. Therefore,
from the scanner’s perspective, all the 3D points are on a regular grid, that is promptly
triangulated using this intrinsic regularity. This is possible because of the limited Z-span.

Figure 2.2: Xbox Kinect v2. The Kinect is an “active structured light” (active) 3D
scanner, primarily thought to be used with the Xbox game console. Nowadays,
Microsoft does not make any more game for the peripheral, but in the latest years
a community of 3D hobbyists, that reevaluated the hardware, is born due to the
device’s lower cost.

12

2.3 Improving the support for 3D scanned data in MeshLab and PyMeshLab

The result of a single scan is generally called a range map. A range map is an incomplete
3D model, that’s because the map refers only to a point of view, and for 3D objects we need
more point of views to reconstruct the entire object.
The next step of the pipeline is the alignment (often called registration in literature). Because
each scan is generated in a different shop, the partial object acquired has its coordinate
system, this means that if we render the scans in a 3D software such as MeshLab, each
scan will be in the wrong place. So, our goal is to bring these scans to a common reference
system. We could do this using this two alignment techniques:

1. Rough alignment: a user manually position the various pieces in an “approximately
correct” position.

2. Fine alignment: the computer execute an algorithm to refine the results using the
shared area between the range maps.

These two techniques combined allow users to align a set of scans in only one mesh. Mesh-
Lab does perform both the alignments using a combination formed by the Iterative Closest
Point algorithm and a global optimization strategy. The alignment step is crucial in the
pipeline. We cannot assume that the scans are error-free, so we introduce two types of er-
rors: acquisition and alignment error (cannot be≤ acquisition error,≤acquisition resolution / 2).
Their sum upper bound the final error produced in the registration process. The alignment
topic is the core of the Chapter 4.

(a) Face - 0◦ (b) Face - 45◦ (c) Face - 90◦ (d) Face - 135◦

(e) Face - 180◦ (f) Face - 225◦ (g) Face - 270◦ (h) Face - 315◦

Figure 2.3: These are some range maps (scans) of a stone head sculpture. The 3D
scanner acquired the meshes looking at the object from different angles, and only
the portion of surface visible from that direction is present in each range map. To
obtain a complete object, all these scans have to be aligned and merged.

One of the results produced by a 3D scanner are the point clouds, which will be discussed
in the next Section.

The latest step in the pipeline is the surface reconstruction: a procedure aiming for the re-
construction of a real object into a 3D model which can be used in different projects, such
as the restoration of a sculpture or being used inside CAD software programs. A recon-
structed surface will be available in the tests done in Section 4.6.

2.3 Point Clouds
A point cloud is one of the simplest existing three-dimensional object. It’s a set of points
inside a space defined by a coordinate system (see Figure 2.4).

We can formally define the point clouds with the following definition.

13

2.4 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Figure 2.4: A point cloud representing the Stanford’s bunny.

Definition 2.3.1 (Point Cloud) A Point Cloud P is an indexed mesh (2.1.2) with the faces set T
equals to ∅.

P = (V, ∅)

Usually in a three-dimensional space, a point cloud defines the shape of a real physical ob-
ject. In addition to the coordinates, a point cloud could have associated metadata, such as
the color of the point, for example.

2.4 The VCG library
The VCG Library [16] [17] is a C++ template-based library for mesh processing, and it is
the core of MeshLab. The library contains many algorithms for:

• Sampling: a variety of algorithms for distributing points over the surface of a mesh.
• Cleaning: a variety of tools to correct small annoying things, like the ones seen in the

Section 1.3.1
• Color Processing: the library provides tools for converting from a representation to

another one.
• Measuring: there are algorithms to measure the distance between surfaces and many

geometric elements.
• Smoothing: sophisticated noise removals tools.
• Texturing: provides algorithms to texture the mesh’s surface.
• Remeshing: subdivision surfaces, ball pivoting surface reconstruction, clustering sim-

plification and marching cubes.
• Spatial Indexing: uniform grids, K-d trees (good for point clouds) 2 and hierarchies of

Bounding Volumes.
• File Format: the library provides importer and exporter for several file formats (PLY,

STL, OBJ, 3DS and so on...).
2A K-d tree [18] is a data structure for organizing points in a k-dimensional space.

14

2.4 Improving the support for 3D scanned data in MeshLab and PyMeshLab

2.4.1 Encoding a Mesh

How to declare a mesh

As said in the introduction of this section, the VCGLib is “templated” based, allows to en-
code a mesh in several ways, allowing the developers to create its definition of mesh. The
standard way to encode a view is the one described in Definition 2.1.2. Let’s make a basic
example of how to declare a new type of mesh.

Suppose we want to encode a point cloud from scratch, without using sophisticated data
structure such as the K-d trees. To accomplish that, let’s define new classes as shown in the
Listing 3.

Listing 3 How to declare a Point Cloud mesh using the VCGLib.

1 /* Forward declaration, used to define new classes. */
2 class PointCloudVertex;
3
4 /**
5 * Define the types for the new mesh. This is a syntactic sugar
6 * in order to define correctly a new mesh for the VCGLib. Since
7 * in C++ there are no constraints on template's inheritance,
8 * this struct allows to us to force the types of template
9 * types in the next definitions.

10 */
11 class PCUsedTypes : public vcg::UsedTypes<
12 vcg::Use<MyVePointCloudVertexrtex>::AsVertexType
13 >{};
14
15 /**
16 * Define a point cloud vertex storing: three geometric coordinates,
17 * three normal coordinates, color in four channel (Red,
18 * Green, Blue & Alpha), a quality, and a bitset for flags.
19 */
20 class PointCloudVertex : vcg::Vertex<
21 PCUsedTypes,
22 vcg::vertex::Coord3f,
23 vcg::vertex::Normal3f,
24 cg::vertex::Qualityf,
25 vcg::vertex::Color4b,
26 vcg::vertex::BitFlags
27 >{};
28
29 /**
30 * In the end we can define our point cloud, like the one
31 * defined in Definition 2.3.1, that is, a mesh with the
32 * face set equals to none.
33 */
34 class PointCloud : vcg::tri::TriMesh<
35 std::vector<PointCloudVertex>
36 >{};

That’s it. To define a new mesh, a developer needs only to derive fromvcg::tri::TriMesh
class and provides the type of containers (in the example we used the STL’s vector) of the
elements used to encode the mesh. The VCGLib offers a great flexibility and a pretty elegant
way to define custom mesh types. There are many other components inside the library (i.e.
faces, edges, ...). During the work of this thesis, the refactor process that will be discussed
in Chapter 4 has introduced two new classes for alignment that are templated on mesh type
as well.

A list of samples can be found inside the VCGLib:
https://github.com/cnr-isti-vclab/vcglib/tree/master/apps/sample.

15

https://github.com/cnr-isti-vclab/vcglib/tree/master/apps/sample

2.4 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Allocating and de-allocating a Mesh

The VCGLib library has several ways to encode a mesh. The most common is a vector of
vertices and vector of triangles, that is, the Indexed Mesh described previously. This type
of mesh is called vcg::tri::TriMesh and it is inheritable to create new subclasses. The
creation of a mesh in memory is managed through the use of the tri::Allocators, for
example, to create a mesh:

Listing 4 Snippet illustrating how to allocate memory for a mesh.
1 // Declare a new mesh to initialize.
2 MyMesh m;
3
4 // Allocate memory for 3 vertices and returns
5 // a pointer pointing to the first of them.
6 MyMesh::VertexIterator vi =
7 vcg::tri::Allocator<MyMesh>::AddVertices(m,3);
8
9 // Same thing for the faces.

10 MyMesh::FaceIterator fi =
11 vcg::tri::Allocator<MyMesh>::AddFaces(m,1);

To free the memory used by the created mesh, the library adopts a Lazy Deletion Strategy,
or in other words, the elements in the vector that are deleted are only flagged, but they are
still there. To get rid of the flagged elements, the user has to call two garbage collecting
functions: CompactFaceVector and CompactVertexVector.

Topological Relations

In many cases, it is useful to consider how the faces of a mesh are connected to each other
without considering the specific particular position of the vertices in space. This kind of
information is usually called the adjacency or “topological” aspect of the mesh. These rela-
tions are useful for example to consider local portion of meshes (e.g. finding the faces that
are connected to a single face) or to traverse in continuous way the surface of the mesh.
An intuitive convention to name topological/adjacency relations is to use an ordered pair of
letters denoting the involved entities of the mesh: Face Edge and Vertices. There are three
mains topological relations for triangle meshes: FF (Face-Face, edge adjacency between tri-
angular faces), FV (from Faces to Vertices, that is, the vertices composing a face) and VF
(Vertex-Face, from a vertex to a triangle, that is, the triangles incident on a vertex). The
other relationships derive from those threes.

The VCGLib does not have a single way to encode topology relationships between trian-
gles and edges. In fact, thanks to the C++ templates, it’s possible to define the relations
in the mesh class definition (just as shown in Listing 3) by just enumerating the adjacency
components needed. Let’s take as example the FF adjacency, which is represented by the
class vcg::face::FFAdj. This relationship encodes the adjacency between faces through
edges, so the class contains three pointers to the adjacent faces (just three because a trian-
gular face can only have three adjacent triangles). MeshLab, that is based over the VCGLib,
adopts a mesh class that has FF and VF adjacencies stored using a lazy/on-demand ap-
proach. They are computed and stored only when an algorithm needs them.

16

Chapter 3

IOPlugin: E57 file format

This chapter will discuss the E57 file format and how the MeshLab’s new IOPlugin, han-
dling the format, has been created and what are the problems we faced during the imple-
mentation.

3.1 Why do we need a standard file format for Point Clouds
The point clouds didn’t have a standard file format. That meant each hardware vendor pro-
duced its own closed-source file format to rely on, preventing the open-source programs to
implement their libraries to read files, accessing the data contained or moreover exchang-
ing data between users. Hence, there was a critical need to create a new open-sourced
file format for the 3D image industry that allows interoperability among 3D hardware and
software manufactures. At the end of the 2000s, some committee members and associa-
tions began to create new standards. According to the members, the new file format had to
follow these five principles:

1. Reliable interoperability: the data should be easy to exchange between vendors.
2. Open-Source: so anyone could contribute to improve the file format, implement it

easily, contribute to address bugs and issues.
3. Low price point: should be affordable for the developers.
4. Minimalist design: the file format must be as simple as possible.
5. Extensibility and Flexibility: so the standard can be extended with new features with-

out breaking the previous versions.

3.2 Current file format standards: LAS vs E57
At the time this document is written, there exist two main standard file formats: LAS and
E57.

LASer (known as ASPR LAS [19]) is a special purpose, public, file format created by the
American Society for Photogrammetry and Remote Sharing to exchange three-dimensional point
clouds by different users. The ASPR thought of this file format to become the standard for
the acquisitions created by a LIDAR Scanner, which is an active scanner (Section 2.2). LAS
are binary files, inside which there are different metadata about the scan acquired by the
hardware scanner. The information contained inside the metadata regards: colors in RGB
format, acquisition date, the software which generated the file and a description of the con-
tent itself, furthermore, they contain X, Y and Z coordinates for the points contained inside
the cloud. This document will not go into more detail to analyze the binary structure of the
file.

The second file format is ASTM E57 [20], developed by David Huber of the robotics de-
partment of the Carnegie Mellon University and the ASTM (American Society for Testing and
Materials) E57 Committee on 3D Imaging Systems. As described by the Huber’s paper, the

17

3.4 Improving the support for 3D scanned data in MeshLab and PyMeshLab

file format can store data from a point cloud created by a laser scanner (or other hardware)
and it allows saving 2D images shot during the acquisition. E57 is designed by the commit-
tee to be used for a general purpose use instead of the LAS file format.

3.3 The E57 file format
An E57 file is a “hybrid” binary file containing data and metadata about point clouds. The
E57 file format adapts a particular data file format design. As said by Huber, there are two
main designs: the first one has fixed sized fields and records, the second one is more flex-
ible, and it uses flexible, self documenting structures with variable length and structure.
The E57 file format is a combination of the best aspects of these two designs. An E57 file
can be divided in three main parts (see Figure 3.1): the Header, the binary data and at last
the XML 1 section.

Figure 3.1: E57 file structure as illustrated by Huber.

The Header section is a small data structure, 48 bytes large, containing all the critical infor-
mation about the file’s structure, like the version file version number and the beginning of
the XML section will be explained later.

As the name suggests, the Binary Data area contains coordinates and colors of the points,
plus the encoded 2D images.

Finally, the XML Section is a hierarchical tree, as said before. As you can see in the Listing 5,
there is a root node (<e57Root>) which contains all the nodes. The nodes refer to metadata
about the acquisition (i.e. the time of the scan) and to two special tags:

• <data3D>: which contains the translation vector and the quaternions of the point
cloud, plus the <points> tag used to get the fileOffset and the recordCount
to read the binary data section.

• <images2D>: similar to the first one but has metadata about the images contained
in the file (such as the encoding, and the representation).

3.4 Implementation of libE57 inside MeshLab
The E57 file format is supported by MeshLab thanks to the libE57 library. This library is
used by an IOPlugin (see Section 1.2) calledE57IOPlugin. The plugin uses the E57 Simple
API, which is wrapped around the E57 Foundation API [21]. The latter API, is a collection
of functions that helps to implement reading and writing of a E57 file.

1XML stands for eXtensible Markup Language, a language used to define the encoding of a
document.

18

3.4 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Listing 5 Snippet of the XML Section of an E57 file. Some XML nodes are omitted.
1 <?xml version="1.0" encoding="UTF-8"?>
2 <e57Root type="Structure"
3 xmlns="http://www.astm.org/COMMIT/E57/2010-e57-v1.0">
4 <formatName type="String">
5 <![CDATA[ASTM E57 3D Imaging Data File]]>
6 </formatName>
7 <guid type="String">
8 <![CDATA[{56D8F874-3656-4CA8-BA17-8BF9757063D0}]]>
9 </guid>

10 <versionMajor type="Integer">1</versionMajor>
11 <creationDateTime type="Structure">
12 <dateTimeValue type="Float">9.6758299097398019e+008</dateTimeValue>
13 <isAtomicClockReferenced type="Integer"/>
14 </creationDateTime>
15 <data3D type="Vector" allowHeterogeneousChildren="1">
16 ...
17 <points fileOffset="40" recordCount="1345856">
18 </points>
19 </data3D>
20 <images2D type="Vector" allowHeterogeneousChildren="1">
21 ...
22 </images2D>
23 </e57Root>

3.4.1 E57IOPlugin
This subsection will explain the main work done for the new IOPlugin and how the meshes
from an E57 file are mapped onto a MeshLab’s ones.

Main Methods

The plugin has two main methods to handle an E57 file: void E57IOPlugin::open and
void E57IOPlugin::save. The first one loads an E57 file and parses its content by read-
ing it using the e57::Reader helper class. The parse process creates new instances of
MeshModel class, which is the abstraction to represent a single mesh (plus some metadata)
inside MeshLab. The save method allows to export the mesh loaded inside MeshLab to a
new E57 file thanks to the e57::Writer helper class.

Mapping an E57 file to VCG Library’s Mesh and vice versa

When theE57IOPlugin::open is invoked, then for each view, theE57IOPlugin::loadMesh
is called. The method takes as input theMeshModel and thee57::Reader to read the data
from the binary section contained inside the file.

Before reading the raw data a class called E57Data3DPoints is instantiated, it contains
several buffers, allocated in the heap, used by the data reader. The helper object created
follows the RAII 2 idiom, which is used in the best practices of modern C++. Since C++
standard implementation doesn’t have a Garbage Collector 3, RAII is used to tie resources
allocation to objects lifetime, making it easier to avoid resource leaks.

Once the data is read from the binary section, several checks will be done for each point
contained in the cloud, such as:

1. the availability of coordinates: if they are in Cartesian or in spherical, in the latter case,
they will convert in the former geometric reference system.

2. the availability of colors: which are in the RGB format.
2RAII: Resource acquisition is initialization
3An automatic technique to reclaim the allocated memory to the operating system.

19

3.4 Improving the support for 3D scanned data in MeshLab and PyMeshLab

3. the availability of surface normals and intensity.

When the checks are done, using the VCGLib a new vertex will be allocated inside the mesh
to be added and the values will be inserted according to the library requirements. If the col-
ors are not available, then the vertex quality (or intensity) will be used to compute the colors
as a scale of gray. Once the function completes its execution, the flow control is returned
to the caller, which will check if there are other points clouds contained inside the file and
eventually re-invoke the loadMesh method.

Whenever the user will save a mesh in E57 file causing the invocation ofE57IOPlugin::save
method, a similar process to the load will be executed, except that the save function passes
only one mesh model. Therefore, it’s not possible to save multiple views inside the E57 file.

3.4.2 Encoded 2D Images: what went wrong
As said before, E57 files contain encoded 2D images within, in PNG or JPEG format ac-
cording to the file format specifications. The images are treated differently inside the file
because they contain the geometric data inside the XML Section. In the Listing 6 is shown
two main XML nodes: the pose and the representation. The first one contains info about the
rotation and the translation of the image inside the three-dimensional space, the second
one contains metadata about the image representation, according to the standard can be:
Spherical, Pinhole and Cylindrical.

(a) Spherical Representation (b) Pinhole Representation (c) CylindricalrRepresentation

There are some E57 files which do not contain colors for the points, so we thought to map
the missing colors by using the encoded 2D images. But, due to the lack of details in the
libE57 documentation, we weren’t able to achieve this goal, thus for the mesh without colors
we used a gray-scale coloring, like the one shown in the Figure 3.4.

20

3.5 Improving the support for 3D scanned data in MeshLab and PyMeshLab

(a) Layer 1

(b) Layer 2

(c) Layer 3

(d) Layer 4

(e) Layer 5

Figure 3.2: These are all the images encoded inside the ‘manitou.e57‘ file. The im-
ages were captured using a spherical projection camera model.

3.5 E57 files tested
Several E57 files have been tested thanks to the samples provided by the website http://www.libe57.org
in “Test Data” section. In this section, there are some point clouds read and displayed by
MeshLab. All the captions comes from the authors of the images.

21

libe57.org

3.5 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Listing 6 XML Section of a 2D image encoded in a E57 file. The nodes contain all
the information about the size and rotation of a 2D image.

1 <pose type="Structure">
2 <rotation type="Structure">
3 <w type="Float">4.1495323938135464e-001</w>
4 <x type="Float">-3.2966867867298849e-003</x>
5 <y type="Float">1.0011244071749291e-003</y>
6 <z type="Float">-9.0983621533387571e-001</z>
7 </rotation>
8 <translation type="Structure">
9 <x type="Float">-1.0437926491522425e+002</x>

10 <y type="Float">7.193530136798914e+001</y>
11 <z type="Float">-3.9486336466587668e-001</z>
12 </translation>
13 </pose>
14 <sphericalRepresentation type="Structure">
15 <jpegImage type="Blob" fileOffset="21807" length="1372"/>
16 <imageHeight type="Integer">2169</imageHeight>
17 <imageWidth type="Integer">9892</imageWidth>
18 <pixelHeight type="Float">
19 6.2860821192160918e-004
20 </pixelHeight>
21 <pixelWidth type="Float">
22 6.2793742364311957e-004
23 </pixelWidth>
24 </sphericalRepresentation>

Figure 3.3: Trimble Data - Multiple Scans point cloud. This scene was scanned in
Paris using a Trimble TX8 for project Terra Mobilita. Color has been captured with
a Nikon 7100 using a fish eye Sigma 10 mm. Colorization and export to e57 has
been done using Trimble RealWorks 8.1. The project contains one multi-station
file (5 scans down-sampled at 50 mm going down from 650 M point to 8 M point)
and two files containing gridded scans (down-sampled from 120 M point to 2 M
point each). Gridded files are stored as spherical coordinates, and non-gridded
ones use XYZ. Screenshot captured in MeshLab 2021.07 during the test phase.

22

3.5 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Figure 3.4: Manitou. This scene has 5 scans and 5 JPG images using the spherical
projection camera model. It was scanned using a Reigl Z420I scanner with an LD3
Texel Camera on top in July 2007. It was converted to E57 using LD3 Studio V5.1.
Screenshot captured in MeshLab 2021.07 during the test phase.

Figure 3.5: Garage. This scene has a large 27M point 360 degree scans and a PNG
using the spherical projection camera model. It was scanned using a new Faro
Focus 3D scanner.Screenshot captured in MeshLab 2021.07 during the test phase.

23

3.5 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Figure 3.6: Leica Data - Parking. This scene has three 360 degree scans and multi-
ple JPG images using the pinhole projection camera model. It was scanned using
a Leica ScanStation 2 and converted to E57 using Leica’s Cyclone release. WARN-
ING: There are no scan names given, the image names have an illegal file name
character(:), and the camera orientation is Z forward and Y down. (E57 standard
is Z backward and Y up). Screenshot captured in MeshLab 2021.07 during the test
phase.

Figure 3.7: Station. This is a single scan taken with a Leica C10 scanner and Nodel
Ninja Panoramic camera. The 271 MB ptx file and 36 MB JPG was reduced to an
117 MB e57 file. Further, zipping the e57 file only produced a 103 MB zip file. It
was converted to E57 using LD3 Studio V5.1. Screenshot captured in MeshLab
2021.07 during the test phase.

24

3.5 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Figure 3.8: Pump. This is a single structured scan stored as cartesian and spherical
points. Data includes intensity and RGB color. Screenshot captured in MeshLab
2021.07 during the test phase.

25

Chapter 4

FilterPlugin: ICP, Overlapping
Meshes & Global Alignment

Chapter 2 introduced point clouds and the process of surface reconstruction (Section 2.2).
This chapter will describe a common problem regarding point alignment, known as the
point set registration problem, and how the existing code for the alignment process has been
refactored between the VCGLib and MeshLab. Thanks to the refactoring we succeeded to
implement a new FilterPlugin, allowing PyMeshLab users to perform alignment between
meshes, see overlapping meshes and execute global alignment of a set mesh.

4.1 What is the Point Set Registration problem
The Point Set Registration is a process used to find a transformation matrix that allows two
meshes to be aligned, i.e. it searches the transformation that minimize the distance between
portions of the meshes where they overlap. This is used as the core problem of registering
together different scans of the same object. In practice, the problem is solved by an iterative
approach that solves a specific case of the least-squares problem at each step, and it can be
formalized in this way.

Point Set Registration Problem Let be R,S two transformation matrices, belonging to
the Reference Mesh and Source Mesh, in a three-dimensional space. The problem is finding a
transformation matrix, called T , to be applied to the Source Mesh such that the geometrical
distance between itself and the Reference Mesh is minimum.

T ∗ = min
T

dist(R, T · S) = min
T
||R− (T · S)||2 (4.1)

There are algorithms that use different approaches to solve the problem, such as the
“Correspondence-based Methods” and the “Simultaneous Pose and Correspondence Methods”. The
latter approach will describe the upcoming algorithm, and it is used inside MeshLab: the
Iterative Closest Point Algorithm.

4.1.1 The Iterative Closest Point Algorithm
The ICP algorithm [22] was invented by Yang Chen and Gérard Medioni. This algorithm can
be summarized in a few steps.

Input Two parameters are taken in input: the Reference Mesh and Source Mesh to align,
plus some other optional parameters to adjust the result.

Output The transformation matrix, when applied to the Source Mesh, will align it to the
Reference Mesh.

26

4.2 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Steps The algorithm steps are:

1. For each point in the source mesh, pair the closest point in the reference point cloud.
2. Estimate the combinations of rotation and translation using a minimization technique

which will best align to its match found in the previous step.
3. Transform the source points using the computed transformation.
4. Loop the previous steps until a certain threshold is reached.

The ICP algorithm, and its various variants, are used for fine aligning meshes pair-wise.

4.1.2 ICP MeshLab’s Implementation
MeshLab’s ICP algorithm implementation uses the formulation proposed by Szymon Rusinkiewicz
and Marc Levoy in their paper “Efficient Variants of the ICP Algorithm” [23]. According to the
research of the two authors, there exist several variants of the ICP algorithm, which can be
classified mainly in six points:

1. Selection of some points set in one or both the meshes.
2. Matching these points to samples in the other mesh.
3. Weighting the corresponding pairs suitably.
4. Rejecting some pairs based on looking at each pair individually or globally.
5. Assigning an Error Metric based on these pairs.
6. Minimizing the error metric.

Rusinkiewicz et al. at the end of their paper proposed an efficient algorithm born from the
combinations they studied. According to the tests done by the authors, the main stage in-
fluencing the algorithm convergence is the matching phase. The authors propose to use
a projection-based algorithm to generate the point correspondences. They combine the
matching algorithm with a point-to-plane error metric and the standard “select-match-
minimize” proposed by Chen and Medioni. For the other stages of the ICP process, they
suggest using the simplest approaches such as random sampling (Masuda [24]) for the se-
lection phase, constant weight to assign to each corresponding point pairs chosen and for
the rejecting phase to use a distance threshold.

MeshLab implements the ICP algorithm using the vcg::AlignPair class provided by the
VCGLib library.

The ICP algorithm implemented in MeshLab returns an instance ofvcg::AlignPair::Result
class, which holds the computed transformation matrix to apply onto the moving mesh to
be aligned with the reference one. There are also data contained in the structure, which are
the chosen points on the reference mesh and the chosen points on the moving mesh before
the algorithm’s execution. Plus, the result contains an error code to check if anything went
wrong during the ICP process and statistical data.

4.2 Multiview Registration
When more than two meshes have to be aligned, a problem called Multiview Registration
comes up. For more than two meshes, Chen and Medioni proposed in their paper to:

1. Align two meshes of the set in a single one, called “metaview”.
2. Align the metaview with another mesh.
3. Repeat the second step until there are no more meshes to align.

27

4.3 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Using this approach, as intuitive as it may seem, is not a good idea because it can produce
a final mesh misaligned due to a terrible distribution error. Kari Pulli [25] came up with a
better solution to avoid this problem. Pulli suggests performing a pairwise alignment be-
tween every mesh and each of its overlapping meshes once. Instead of using all the meshes
to process the alignment, the algorithm uses only the pairwise constraint that should be al-
ways satisfied. The constraints are great for space efficiency because they use less memory
than the original data, allowing the algorithm to handle large data sets at the same time
without worrying. Then, the algorithm incrementally enforces these constraints to obtain
a global multiview alignment, using a method that does not depend on the initial registra-
tion transformations. This method is less likely to get stuck into a local minimum, moreover
distributes the alignment error between meshes.

The algorithm proposed by Pulli can be read in the Listing 7. The multiview alignment
begins by choosing the mesh with the most connections or overlapping areas, putting it
inside the active set, and finally inserting the remaining meshes inside the dormant set except
for the one chosen previously. Then the algorithm adds the meshes in the dormant set into
the active set at the time. At each iteration, the mesh with the most connections coming
from the dormant set is chosen and a queue of still moving meshes is initialized with the
current view. This queue will be processed until it becomes empty by removing the top
element and aligning it with the neighbors who are in the active set. If the alignment error is
small enough, then the algorithm will merge the current mesh’s neighbors into the queue.
So, the error gets distributed evenly among the mesh pairs in the queue loop. A view is
aligned to another using the ICP algorithm.

Listing 7 Code for the multiview alignment algorithm by Kari Pulli.
1 activeSet = {}
2 dormantSet = views
3 curr = mostLinks(dormantSet, dormantSet)
4 activeSet.add(curr)
5 dormantSet.remove(curr)
6
7 while (!dormantSet.empty()) {
8
9 queue = {}

10 curr = mostLinks(dormantSet, activeSet)
11 activeSet.add(curr)
12 dormantSet.remove(curr)
13 queue.push(curr)
14
15 while (!queue.empty()) {
16
17 curr = queue.pop()
18 neighbors = activeSet.neighbors(curr)
19 relativeChange = align(curr, neighbors)
20
21 if (relativeChange > tolerance) {
22 queue.merge(neighbors)
23 }
24 }
25 }

4.3 Refactoring
Previously in MeshLab, the code used for the alignment was tightly coupled to the Align
Tool, see the Figure 1.7. Thus, a refactoring has been done to relax the coupling of the code,
porting it to the VCGLib.

Refactoring is not about moving code from one codebase to another or simply cleaning up

28

4.4 Improving the support for 3D scanned data in MeshLab and PyMeshLab

the code, on the contrary, this process requires a lot of consideration. As said by the software
developer Martin Fowler in its book “Refactoring: Improving the Design of Existing Code” [26]:

“A refactoring is a change made to the internal structure of software to make it easier to under-
stand and cheaper to modify without changing its observable behavior.”

Therefore, this operation has to be done meticulously, otherwise, there is the risk to break
already working code and the program flow control may be altered, especially if the classes
being considered are legacies. Also, the refactoring process allowed us discovering new bugs
never found in the previous code implementation.

4.3.1 “Decoupling” the MeshTree and the OccupancyGrid classes
As said in the introduction of this section, the previous code for the alignment was tightly
coupled to MeshLab. The main classes who needed to be refactored were: the MeshTree
and the OccupancyGrid. These two classes have been abstracted, templatized and moved
inside the VCG Library to be independent from MeshLab and usable over generic types of
meshes instead of being customized to the specific types of MeshLab.

The MeshTree class, as the name suggests, is used to build a tree data structure of
meshes that will be aligned. The second class is an abstraction of the overlapping of the
views to understand the connections between them.

Dependencies from Qt

Both the classes had dependencies to the Qt framework, so the first step done during the
refactoring was to remove all the references to the framework. The main classes used were
the QtList and QStringList. Fortunately, all the modern C++ implementations contain
the STL 1, so the QtList was replaced with the std::list and thanks to the template
mechanism of C++ the QtStringListwas converted into std::list<std::string>.
Also, all the loops iterators were replaced with the range-based for loop available since C++11,
so if in the future we would like to change the class implementation of a data structure there
won’t be the necessity to modify the entire source code.

Cleaning code

During the refactoring some type declarations were redefined to avoiding naming collision,
so for example the variables declared as vector were changed into std::vector. More-
over, the code contained pointer variables initialized with zeros, so the values have been
replaced with the nullptr keyword, according to the C++ best practices.

Bug founds

Once the refactoring was completed, we began to make some tests to check if the operation
broke the existing code. In a test that we will show later in the Section 4.6, we spot a bug
contained in the previous code version that has been fixed. If during the global alignment
process a mesh had no connected components, then MeshLab would crash due to a failed
assertion, so we add just a simple check to fix the bug.

4.4 Implementation of the filters
The new FilterPlugin has three filters that will be explained as follows.

1Standard Template Library: a library containing general-purpose data structures and algorithms.

29

4.4 Improving the support for 3D scanned data in MeshLab and PyMeshLab

4.4.1 First Filter: local alignment between two meshes
The “Local Alignment Between Two Meshes” filter just applies the ICP algorithm, previously
described, over two elements: the reference and the source meshes. The first mesh is kept
fixed during the ICP process, the latter will be rotated and translated to be aligned with the
other mesh.

Figure 4.1: The local alignment filter. Screenshot captured in Mesh-
Lab2021.09d nightly.

The filter has parameters to apply to the ICP algorithm coming from the Align Tool, plus a
new checkbox, Save Last Iteration, which if it is flagged, it allows to use the final alignment’s
result of the two meshes to create two new layers defined:

• Chosen Source Points: containing the selected points for the alignment of the Source
Mesh prior to the filter application.

• Corresponding Chosen Points: containing the corresponding points from the Reference
Mesh which will be aligned to Source Mesh.

The Figure 4.2 below shows the generated points by the applying of the new ICP filter.

4.4.2 Second Filter: overlapping meshes
This refactoring process shows a good example of code reusing, in fact, from the refactor-
ing process we were able to uncouple these classes and then create a new piece of software,
that is, a new filter. The “Overlapping Meshes” filter helps to understand which meshes over-
lap between themselves. This was possible due to the OccupancyGrid class that now is
no more highly coupled with the MeshTree class, relaxing the coupling lead us to a more
code reusability inside the codebase.

The filter returns to PyMeshLab a map containing an array of integer tuples, where each
tuple has two IDs, respectively, for the source and target mesh. Each ID is associated by
MeshLab when loading the mesh in the document. The Listing 8 shows a text output after
the filter’s execution.

30

4.4 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Figure 4.2: This figure shows the two new layers generated by the “ICP Between
Meshes” filter. The green points are the “Chosen Source Points”, the red points are
“Corresponding Reference Points”. Screenshot captured in MeshLab2021.09d nightly.

Figure 4.3: The overlapping meshes filter. Screenshot captured in Mesh-
Lab2021.09d nightly.

4.4.3 Third Filter: global alignment between meshes
The main classes used by the Align Tool, to perform the global alignment, are theMeshTree
and the OccupancyGrid previously explained in Section 4.3.1.

The “Global Alignment Between Meshes” filters apply the alignment process as described in
the Section 4.2. The filter, in addition to the ICP parameters, has a category for the Arc
Creation Parameters, which were inherited by the Align Tool.

31

4.5 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Listing 8 Here is the output of the filter’s execution. Each pair is represented by
the first string of each line, the first element indicates the source mesh and the
second one the target. The arrow (→) is read as “overlaps with”.

1 [4 → 5]: Mesh "bun045.ply" overlaps with "bun000.ply".
2 [0 → 5]: Mesh "bun315.ply" overlaps with "bun000.ply".
3 [3 → 4]: Mesh "bun090.ply" overlaps with "bun045.ply".
4 [0 → 4]: Mesh "bun315.ply" overlaps with "bun045.ply".
5 [3 → 5]: Mesh "bun090.ply" overlaps with "bun000.ply".
6 [2 → 3]: Mesh "bun180.ply" overlaps with "bun090.ply".
7 [0 → 1]: Mesh "bun315.ply" overlaps with "bun270.ply".
8 [1 → 5]: Mesh "bun270.ply" overlaps with "bun000.ply".
9 [1 → 2]: Mesh "bun270.ply" overlaps with "bun180.ply".

10 [1 → 4]: Mesh "bun270.ply" overlaps with "bun045.ply".
11 [0 → 3]: Mesh "bun315.ply" overlaps with "bun090.ply".
12 [2 → 4]: Mesh "bun180.ply" overlaps with "bun045.ply".
13 [1 → 3]: Mesh "bun270.ply" overlaps with "bun090.ply".
14 [2 → 5]: Mesh "bun180.ply" overlaps with "bun000.ply".
15 [0 → 2]: Mesh "bun315.ply" overlaps with "bun180.ply".

Figure 4.4: The global alignment filter. Screenshot captured in Mesh-
Lab2021.09d nightly.

4.5 Some limitations in PyMeshLab
The new filter allows aligning two meshes, and beside the 4x4 matrix encoding the trans-
formation that align the first mesh to the second, it returns a collection of statistical data to
understand the performances of the ICP algorithm. However, during the testing of the filter
in PyMeshLab, we discovered a problem. The map generated by the filter is an associative
array of a list of doubles, like the one shown below.

32

4.5 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Listing 9 The function’s body is used to parse the map returned by the filter exe-
cution in PyMeshLab. It’s reported only a tiny snippet of the true code. The com-
plete code is contained in the file linked to this GitHub page.

1 pybind11::dict
2 toPyDict(const std::map<std::string, QVariant>& qVariantMap) {
3
4 pybind11::dict outDict;
5
6 for (const auto& p : qVariantMap){
7 if (std::string(p.second.typeName()) == "int"){
8 outDict[p.first.c_str()] = p.second.toInt();
9 }

10 else if (std::string(p.second.typeName()) == "double"){
11 outDict[p.first.c_str()] = p.second.toDouble();
12 }
13 else if (std::string(p.second.typeName()) == "float"){
14 outDict[p.first.c_str()] = p.second.toFloat();
15 }
16
17 else {
18 std::cerr << "Warning: type "
19 << p.second.typeName()
20 << " still not supported for py::dict conversion\n"
21 << "Please open an issue on GitHub about this.";
22 }
23 }
24 return outDict;
25
26 }

1 std::map<std::string, QVariant> {
2 {"min_dist_abs", QVariant::fromValue(minDistAbs)},
3 {"pcl_50", QVariant::fromValue(pcl50)},
4 {"sample_tested", QVariant::fromValue(sampleTested)},
5 {"sample_used", QVariant::fromValue(sampleUsed)},
6 {"distance_discarded", QVariant::fromValue(distancedDiscarded)},
7 {"border_discarded", QVariant::fromValue(borderDiscarded)},
8 {"angle_discarded", QVariant::fromValue(angleDiscarded)},
9 };

When executing the filter function in PyMeshLab, it returns an object of type None and
not a dictionary containing the list of doubles shown above. Using the verbosity mode in
PyMeshLab, a log has been printed into the terminal window:

“Warning: type std::list still not supported for py::dict conversion”

Hence, we discovered that PyMeshLab doesn’t support the STL containers as values for the
keys. This error is thrown by the pybind11::dict toPyDict function discussed in the
Section 1.3.2. The function invoked acts as a simple parser, and since there are no branches
that handle the STL containers, then the parse fails. The fix is almost straightforward to
apply, we just need to add the containers to the function, and we are done. The code for the
toPyDict function is shown in the Listing 9.

33

4.6 Improving the support for 3D scanned data in MeshLab and PyMeshLab

4.6 Alignment Tests
To test the refactored code, we used two datasets: the first one is a set of 3D scanned sculp-
ture’s head and the second one is the well-known Stanford’s Bunny that helped us find
a bug in the previous alignment code. To understand the tests, we compared them with
the old MeshLab stable release, both in single-precision and double-precision mode. The
testing results differs for a non-significant digit, since in the ICP algorithm there is a little
randomness factor used to align the meshes, see Figure 4.5.

(a) Old Align Tool before refactoring (b) New Align Tool after refactoring

Figure 4.5: The old Align tool vs the new one results. These screenshots are cap-
tured from MeshLab2021.09d nightly (before and after refactoring) running in
single-precision mode.

The following subsection will show the datasets used during the test phase.

First dataset

This dataset has eight different rangemaps. The Table 4.1 shows all the scans of a king’s
sculpture. Each rangemap is acquired by a different angle. The scans have been loaded
inside MeshLab and aligned using the Align Tool. Once the rough alignment is finished,
global set registration performs and align the meshes globally. The results of the global
alignment are shown in Table 4.2.

Table 4.1: First dataset

First dataset
Mesh Filename Vertices Faces Size

faccia000.ply 85.849 166.259 5.2 MB

faccia045.ply 79.150 154.244 4.8 MB

faccia090.ply 77.538 150.170 4.7 MB

faccia135.ply 74.207 144.557 4.5 MB

34

4.6 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Continuation of Table 4.1
Mesh Filename Vertices Faces Size

faccia180.ply 79.752 154.807 4.8 MB

faccia225.ply 73.853 143.021 4.5 MB

faccia270.ply 79.110 153.721 4.8 MB

faccia315.ply 80.281 156.662 5.9 MB

Table 4.2: First dataset results

First dataset
Rough Alignment Fine Alignment Reconstruction

35

4.6 Improving the support for 3D scanned data in MeshLab and PyMeshLab

(a) Rough Aligment - 1 (b) Fine Alignment - 2

(c) Rough Aligment - 1 (d) Fine Alignment - 2

Figure 4.6: After a global fine alignment step, the range maps are all finely aligned
together. The different scans (in different color) before the fine alignment did not
match perfectly, (see for example the nose in the top left figure) while after the
process there are no discontinuities between the various scans.

Second dataset

This dataset contains ten scans of the Stanford’s Bunny (Table 4.3), which is a standard
dataset used as a reference. Like for the statue, the bunny has been acquired by different
angles and prospective, once the scan is complete, the rangemaps have been aligned with
a manual point base alignment, and then we applied the global alignment process (Table
4.4).

Table 4.3: Second dataset

Second dataset
Mesh Filename Vertices Faces Size

bun000.ply 40.256 79.013 2.0MB

bun045.ply 40.097 78.686 2.0MB

36

4.6 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Continuation of Table 4.3
Mesh Filename Vertices Faces Size

bun090.ply 30.379 58.865 1.7MB

bun180.ply 40.251 79.119 2.0MB

bun270.ply 31.701 61.244 1.7MB

bun315.ply 35.336 68.934 1.8MB

chin.ply 37.738 73.602 1.9MB

ear back.ply 32.193 62.639 1.7MB

top2.ply 38.298 75.100 1.9MB

top3.ply 36.023 70.640 1.8MB

37

4.6 Improving the support for 3D scanned data in MeshLab and PyMeshLab

Table 4.4: Second dataset results

Second dataset results
Rough Alignment Fine Alignment Reconstruction

38

Chapter 5

Conclusions

Thanks to this work now the MeshLab and PyMeshLab users have more features to use for
their daily usage in the context of the processing of 3D scanned data. The creation of the
new E57 plugin will allow users to import scanned data in his format directly inside Mesh-
Lab, where they can subsequently process. Thanks to the refactoring of the alignment core,
the PyMeshLab users can now access to the set of functionality for registration that before
were possible only inside the desktop version of MeshLab, this allows for example to use
mesh alignment automatically in their script to create new automatic processing pipelines,
boosting their productivity to even higher level.

5.1 Contributions
All the contributions made to MeshLab and VCGLib codebases can be found on GitHub.
Each contribution has been made through a pull request using git. To see the pull requests
quickly, here are the links:

• “Adding IOPlugin for E57”: https://github.com/cnr-isti-vclab/meshlab/pull/1036.
• “Adding ICP FilterPlugin”: https://github.com/cnr-isti-vclab/meshlab/pull/1087.
• “Adding Overlapping Meshes”: https://github.com/cnr-isti-vclab/meshlab/pull/1101.
• “Add MeshTree and OccupancyGrid”: https://github.com/cnr-isti-vclab/vcglib/pull/177.

5.2 Future developments
Right now, MeshLab can only export E57 files single-layer, in the future we would like to
give the capability to export several multi layers-files. It would be great to extend the sup-
port for others metadata contained in a E57 file, for example loading the contained 2D im-
ages to be able to see the photo took during the acquisition by the 3D scanner directly inside
MeshLab.

Furthermore, as already discussed in Section 4.5, at the moment PyMeshLab supports only
a small subset of C++ types, thus each time we would like to add a new type we have to
edit the source code in order to be able to parse and to bind the new type into the Python en-
vironment. So, using the pybind11’s conversion mechanisms, we could obtain a dynamic
type inference without compiling PyMeshLab from the source and removing the depen-
dency from QVariant class.

5.3 What has been learned
Before this thesis, I did not know how meshes and other 3D graphics element were imple-
mented in a high-end graphics library such as the VCGLib, also I had never put my hands
into a large codebase like MeshLab. Thanks to this work, I begin to understand what are
some problems of 3D modelling, designing and building complex interactive applications

39

https://github.com/cnr-isti-vclab/meshlab/pull/1036
https://github.com/cnr-isti-vclab/meshlab/pull/1087
https://github.com/cnr-isti-vclab/meshlab/pull/1101
https://github.com/cnr-isti-vclab/vcglib/pull/177

5.3 Improving the support for 3D scanned data in MeshLab and PyMeshLab

that works in this domain.

Developing MeshLab plugins allowed me to learn the basis of mesh processing, from the
data structures used for meshes and how the 3D graphics is handled by standard libraries.
Also, I learned the power of the bindings in Python and how they can help to reuse existing
code to help people’s productivity.

Furthermore, from a professional working competences point of view, I saw for the first time
a CI/CD (Continuous Integration / Continuous Development) pipeline using GitHub actions.
For each operating systems, there exists a workflow that compiles and deploys MeshLab
in the two versions: the single-precision and the double-precision. It sure was exhausting
waiting for the completion of the workflows because MeshLab is not a small program, but
it was worth it because now I begin to understand some common practices in professional
development of large codebases.

40

Chapter 6

Acknowledgements

Small premise: these are personal thoughts, the reader is free to ignore them. I am not so
fantastic at thanks, but I will try my best.

At the end I made it. After just three years I finished my first, unforgettable, academic jour-
ney. I met so many friends, so many wonderful teachers who taught me how to be a “junior”
computer scientist! Sure, it wasn’t all fun and games, but that didn’t discourage me because
when I have a goal on my mind I am really stubborn. Every time I fell down, I learn a new
lesson, that is make people humans, the ability to learn from mistakes and I strongly believe
in this so-called “power”.

I would like to thank my friends, they were always present in difficult times, also I would
like to say thanks to my university colleagues that spent plenty of time with me to study
and to have fun. I would like to thank my part-time job colleagues because they taught me
how to behave inside a professional environment such a software house. I would like to
say a huge thanks to the professor Paolo Cignoni and Alessandro Muntoni for their avail-
ability to make this thesis. Furthermore, I would like to thank my girlfriend, Alessia, for
the considerable amount of patience and love she gave to me. And, at last but not for im-
portance, I would like to thank my family, I have no words to describe my gratitude to them.

To summarize: thanks to everyone, I’m glad to have people like you by my side. I hope to
grow up more and more and learn new things always. I can’t wait to see what waits for me
next.

By the “Junior” Computer Scientist:
Gabriele Pappalardo

41

Bibliography

[1] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia,
“MeshLab: an Open-Source Mesh Processing Tool,” in Eurographics Italian Chapter
Conference, V. Scarano, R. D. Chiara, and U. Erra, Eds. The Eurographics Associa-
tion, 2008.

[2] P. Kyriakou and S. Hermon, “Building a dynamically generated virtual museum using
a game engine.” in Digital Heritage (1), 2013, p. 443.

[3] G. Constantinou, G. Wilson, S. Sadeghi-Esfahlani, and M. Cirstea, “An effective ap-
proach to the use of 3d scanning technology which shortens the development time of
3d models,” in 2017 International Conference on Optimization of Electrical and Electronic
Equipment (OPTIM) 2017 Intl Aegean Conference on Electrical Machines and Power Elec-
tronics (ACEMP), 2017, pp. 1083–1088.

[4] M. M. Shashkov, C. S. Nguyen, M. Yepez, M. Hess-Flores, and K. I. Joy, “Semi-
autonomous digitization of real-world environments,” in 2014 Computer Games: AI,
Animation, Mobile, Multimedia, Educational and Serious Games (CGAMES), 2014, pp. 1–
4.

[5] M. Koopaie and S. Kolahdouz, “Three-dimensional simulation of human teeth and its
application in dental education and research,” Medical journal of the Islamic Republic of
Iran, vol. 30, p. 461, 2016.

[6] B. Bradley, A. D. Chan, and M. Hayes, “A 3d scanning system for biomedical pur-
poses,” International journal of advanced media and communication, vol. 3, no. 1-2, pp.
35–54, 2009.

[7] L. Frizziero, G. M. Santi, A. Liverani, F. Napolitano, P. Papaleo, E. Maredi,
G. L. D. Gennaro, P. Zarantonello, S. Stallone, S. Stilli, and G. Trisolino,
“Computer-aided surgical simulation for correcting complex limb deformities in
children,” Applied Sciences, vol. 10, no. 15, 2020. [Online]. Available: https:
//www.mdpi.com/2076-3417/10/15/5181

[8] J. R. Jastifer and P. A. Gustafson, “Three-dimensional printing and surgical simula-
tion for preoperative planning of deformity correction in foot and ankle surgery,” The
Journal of Foot and Ankle Surgery, vol. 56, no. 1, pp. 191–195, 2017.

[9] Wikipedia, “Unified Modeling Language — Wikipedia, the free encyclopedia,”
http://en.wikipedia.org/w/index.php?title=Unified%20Modeling%20Language&
oldid=1044783151, 2021, [Online; accessed 22-September-2021].

[10] F. Robinet, R. Arnaud, T. Parisi, and P. Cozzi, “gltf: Designing an open-standard run-
time asset format,” GPU Pro, vol. 5, pp. 375–392, 2014.

[11] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,” ACM Trans-
actions on Graphics (ToG), vol. 32, no. 3, pp. 1–13, 2013.

[12] A. Muntoni and P. Cignoni, “PyMeshLab,” Jan. 2021.
[13] pybind, “pybind11.” [Online]. Available: https://pybind11.readthedocs.io/en/latest/
[14] M. Wilson, Imperfect C++ : practical solutions for real-life programming. Addison-

Wesley, 2009.
[15] B. Curless, “From range scans to 3d models,” SIGGRAPH Comput. Graph., vol. 33,

no. 4, p. 38–41, Nov. 1999. [Online]. Available: https://doi.org/10.1145/345370.345399

42

https://www.mdpi.com/2076-3417/10/15/5181
https://www.mdpi.com/2076-3417/10/15/5181
http://en.wikipedia.org/w/index.php?title=Unified%20Modeling%20Language&oldid=1044783151
http://en.wikipedia.org/w/index.php?title=Unified%20Modeling%20Language&oldid=1044783151
https://pybind11.readthedocs.io/en/latest/
https://doi.org/10.1145/345370.345399

6.0 Improving the support for 3D scanned data in MeshLab and PyMeshLab

[16] P. Cignoni, F. Ganovelli, N. Pietroni, F. Ponchio, G. Ranzuglia, M. Corsini,
M. D. Benedetto, L. Malomo, A. Muntoni, M. Tarini, T. Alderighi, G. Palma,
M. Callieri, G. Marcias, M. Dellepiane, A. Maggiordomo, J. Senneker, N. Wenzel,
I. Manolas, and M. Potenziani, “Vcglib 2021.07,” Jul. 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.5113906

[17] P. Cignoni, “Introduction to vcg library: a mesh processing library.”
[18] L. M. Rocca and L. Serrano, Chapter 9. Manning, 2021.
[19] ASPRS, “Laser (las) file format exchange activities.” [On-

line]. Available: https://www.asprs.org/divisions-committees/lidar-division/
laser-las-file-format-exchange-activities

[20] D. Huber, “The astm e57 file format for 3d imaging data exchange,” in Proceedings of
SPIE Electronics Imaging Science and Technology Conference (IS&T), 3D Imaging Metrol-
ogy, vol. 7864, January 2011.

[21] “Software tools for managing e57 files.” [Online]. Available: http://www.libe57.org/
[22] Y. Chen and G. Medioni, “Object modeling by registration of multiple range images,”

Image Vision Comput., vol. 10, pp. 145–155, 01 1992.
[23] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,” in Proceedings

Third International Conference on 3-D Digital Imaging and Modeling, 2001, pp. 145–152.
[24] T. Masuda, K. Sakaue, and N. Yokoya, “Registration and integration of multiple range

images for 3-d model construction,” vol. 1, 09 1996, pp. 879 – 883 vol.1.
[25] K. Pulli, “Multiview registration for large data sets,” in Second international conference

on 3-d digital imaging and modeling (cat. no. pr00062). IEEE, 1999, pp. 160–168.
[26] M. Fowler, Refactoring: Improving the design of existing code. Addison-Wesley, 2019.

43

https://doi.org/10.5281/zenodo.5113906
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
http://www.libe57.org/

	Introduction
	Introduction to MeshLab
	MeshLab's Goals and Impact

	MeshLab's plugins architecture and goals
	IOPlugin
	FilterPlugin
	EditPlugin

	The Python Counterpart: PyMeshLab
	Motivations
	PyMeshLab's internals

	Mesh, Point Clouds, and VCGLib
	Mesh
	3D Scanning
	Point Clouds
	The VCG library
	Encoding a Mesh

	IOPlugin: E57 file format
	Why do we need a standard file format for Point Clouds
	Current file format standards: LAS vs E57
	The E57 file format
	Implementation of libE57 inside MeshLab
	E57IOPlugin
	Encoded 2D Images: what went wrong

	E57 files tested

	FilterPlugin: ICP, Overlapping Meshes & Global Alignment
	What is the Point Set Registration problem
	The Iterative Closest Point Algorithm
	ICP MeshLab's Implementation

	Multiview Registration
	Refactoring
	``Decoupling" the MeshTree and the OccupancyGrid classes

	Implementation of the filters
	First Filter: local alignment between two meshes
	Second Filter: overlapping meshes
	Third Filter: global alignment between meshes

	Some limitations in PyMeshLab
	Alignment Tests

	Conclusions
	Contributions
	Future developments
	What has been learned

	Acknowledgements

